Nuprl Lemma : qbetween-qdist

[a,b,r,s:ℚ].  (qdist(a;b) ≤ (s r)) supposing (r ≤ b ≤ and r ≤ a ≤ s)


Proof




Definitions occuring in Statement :  qbetween: a ≤ b ≤ c qdist: qdist(r;s) qle: r ≤ s qsub: s rationals: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  qdist: qdist(r;s) qbetween: a ≤ b ≤ c uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q qabs: |r| callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) implies:  Q prop: true: True subtype_rel: A ⊆B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff not: ¬A qsub: s
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type qsub_wf evalall-reduce qle_witness qabs_wf qle_wf qpositive_wf bool_wf equal-wf-T-base assert_wf qless_wf int-subtype-rationals qle-normalize bnot_wf not_wf squash_wf true_wf ifthenelse_wf qminus-qsub iff_weakening_equal uiff_transitivity eqtt_to_assert assert-qpositive iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf qadd_wf qmul_wf mon_assoc_q qadd_com qadd_assoc qadd-non-neg
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesis independent_isectElimination hypothesisEquality callbyvalueReduce because_Cache independent_functionElimination productEquality isect_memberEquality equalityTransitivity equalitySymmetry natural_numberEquality baseClosed applyEquality lambdaEquality imageElimination universeEquality imageMemberEquality lambdaFormation unionElimination equalityElimination independent_pairFormation impliesFunctionality dependent_functionElimination hyp_replacement applyLambdaEquality minusEquality

Latex:
\mforall{}[a,b,r,s:\mBbbQ{}].    (qdist(a;b)  \mleq{}  (s  -  r))  supposing  (r  \mleq{}  b  \mleq{}  s  and  r  \mleq{}  a  \mleq{}  s)



Date html generated: 2018_05_21-PM-11_58_55
Last ObjectModification: 2017_07_26-PM-06_48_24

Theory : rationals


Home Index