Nuprl Lemma : qmin-list-bounds
∀L:ℚ List
(0 < ||L||
⇒ (∀x:ℚ
((x ≤ qmin-list(L)
⇐⇒ (∀y∈L.x ≤ y))
∧ (qmin-list(L) ≤ x
⇐⇒ (∃y∈L. y ≤ x))
∧ (x < qmin-list(L)
⇐⇒ (∀y∈L.x < y))
∧ (qmin-list(L) < x
⇐⇒ (∃y∈L. y < x)))))
Proof
Definitions occuring in Statement :
qmin-list: qmin-list(L)
,
qle: r ≤ s
,
qless: r < s
,
rationals: ℚ
,
l_exists: (∃x∈L. P[x])
,
l_all: (∀x∈L.P[x])
,
length: ||as||
,
list: T List
,
less_than: a < b
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
and: P ∧ Q
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
iff: P
⇐⇒ Q
,
qmin: qmin(x;y)
,
prop: ℙ
,
rev_implies: P
⇐ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
guard: {T}
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
,
cand: A c∧ B
,
qmin-list: qmin-list(L)
Lemmas referenced :
rationals_wf,
istype-less_than,
length_wf,
list_wf,
combine-list-rel-and,
qmin_wf,
qle_wf,
q_le_wf,
eqtt_to_assert,
assert-q_le-eq,
iff_weakening_equal,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_wf,
bool_subtype_base,
assert-bnot,
qmin-assoc,
assert_wf,
bnot_wf,
not_wf,
istype-assert,
istype-void,
qle_complement_qorder,
qless_transitivity_1_qorder,
qle_weakening_lt_qorder,
qle_transitivity_qorder,
bool_cases,
iff_transitivity,
iff_weakening_uiff,
assert_of_bnot,
combine-list-rel-or,
uiff_transitivity2,
equal-wf-T-base,
qless_transitivity_2_qorder,
qless_wf,
qless_transitivity
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
independent_pairFormation,
universeIsType,
cut,
introduction,
extract_by_obid,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
natural_numberEquality,
hypothesisEquality,
dependent_functionElimination,
sqequalRule,
lambdaEquality_alt,
inhabitedIsType,
independent_functionElimination,
productElimination,
unionElimination,
equalityElimination,
because_Cache,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
dependent_pairFormation_alt,
equalityIstype,
promote_hyp,
instantiate,
cumulativity,
voidElimination,
productIsType,
functionIsType,
baseClosed,
unionIsType,
inlFormation_alt,
inrFormation_alt
Latex:
\mforall{}L:\mBbbQ{} List
(0 < ||L||
{}\mRightarrow{} (\mforall{}x:\mBbbQ{}
((x \mleq{} qmin-list(L) \mLeftarrow{}{}\mRightarrow{} (\mforall{}y\mmember{}L.x \mleq{} y))
\mwedge{} (qmin-list(L) \mleq{} x \mLeftarrow{}{}\mRightarrow{} (\mexists{}y\mmember{}L. y \mleq{} x))
\mwedge{} (x < qmin-list(L) \mLeftarrow{}{}\mRightarrow{} (\mforall{}y\mmember{}L.x < y))
\mwedge{} (qmin-list(L) < x \mLeftarrow{}{}\mRightarrow{} (\mexists{}y\mmember{}L. y < x)))))
Date html generated:
2020_05_20-AM-09_16_05
Last ObjectModification:
2020_01_06-PM-05_24_48
Theory : rationals
Home
Index