Nuprl Lemma : qtruncate_functionality

[a,b:ℚ]. ∀[N:ℕ+].  qtruncate(a;N) ≤ qtruncate(b;N) supposing a ≤ b


Proof




Definitions occuring in Statement :  qtruncate: qtruncate(q;N) qle: r ≤ s rationals: nat_plus: + uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  qtruncate: qtruncate(q;N) uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a nat_plus: + uiff: uiff(P;Q) and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: rev_uimplies: rev_uimplies(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] true: True int_nzero: -o nequal: a ≠ b ∈  guard: {T} squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  int_formula_prop_le_lemma intformle_wf decidable__le qle-int qmul_preserves_qle2 q-ceil_functionality iff_weakening_equal qmul-qdiv-cancel qmul_comm_qrng not_wf true_wf squash_wf qle_witness nat_plus_wf qle_wf qtruncate_wf equal_wf int_formula_prop_eq_lemma intformeq_wf nequal_wf subtype_rel_sets int_nzero-rational int-subtype-rationals less_than_wf rationals_wf subtype_rel_set int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties qless-int qmul_wf q-ceil_wf qdiv_wf qmul_preserves_qle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesis applyEquality sqequalRule independent_isectElimination introduction natural_numberEquality setElimination rename hypothesisEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll setEquality lambdaFormation independent_functionElimination isect_memberFormation equalityTransitivity equalitySymmetry imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[a,b:\mBbbQ{}].  \mforall{}[N:\mBbbN{}\msupplus{}].    qtruncate(a;N)  \mleq{}  qtruncate(b;N)  supposing  a  \mleq{}  b



Date html generated: 2016_05_15-PM-11_35_34
Last ObjectModification: 2016_01_16-PM-09_12_09

Theory : rationals


Home Index