Nuprl Lemma : rat-cube-dimension-one

k:ℕ. ∀c:ℚCube(k).
  (dim(c) 1 ∈ ℤ ⇐⇒ ∃i:ℕk. (fst((c i)) < snd((c i)) ∧ (∀j:ℕk. ((¬(j i ∈ ℤ))  ((fst((c j))) (snd((c j))) ∈ ℚ)))))


Proof




Definitions occuring in Statement :  rat-cube-dimension: dim(c) rational-cube: Cube(k) qless: r < s rationals: int_seg: {i..j-} nat: pi1: fst(t) pi2: snd(t) all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  decidable: Dec(P) inhabited-rat-interval: Inhabited(I) true: True assert: b bnot: ¬bb sq_type: SQType(T) or: P ∨ Q bfalse: ff ifthenelse: if then else fi  guard: {T} btrue: tt it: unit: Unit bool: 𝔹 rat-interval-dimension: dim(I) cand: c∧ B uiff: uiff(P;Q) prop: pi2: snd(t) pi1: fst(t) rational-interval: Interval rev_implies:  Q false: False squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k not: ¬A uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] int_seg: {i..j-} subtype_rel: A ⊆B exists: x:A. B[x] rational-cube: Cube(k) nat: uall: [x:A]. B[x] member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x]
Lemmas referenced :  qless_irreflexivity qless_transitivity_2_qorder qle_weakening_eq_qorder qle_weakening_lt_qorder decidable__equal_int q_le_wf assert-q_le-eq qle_antisymmetry qless_complement_qorder qle_wf assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert iff_weakening_equal assert-q_less-eq eqtt_to_assert q_less_wf rev_implies_wf rat-cube-dimension-1 not_wf rat-cube-dimension_wf equal-wf-base assert-inhabited-rat-cube inhabited-rat-cube_wf assert_wf iff_weakening_uiff istype-nat rational-cube_wf rationals_wf qless_wf istype-void int_subtype_base lelt_wf set_subtype_base rat-interval-dimension_wf istype-int inhabited-rat-interval_wf istype-assert int_seg_wf
Rules used in proof :  voidElimination cumulativity instantiate equalityElimination unionElimination dependent_pairFormation_alt productEquality addEquality minusEquality promote_hyp functionEquality independent_functionElimination dependent_functionElimination equalityTransitivity inhabitedIsType imageElimination productElimination equalitySymmetry sqequalBase baseClosed independent_isectElimination lambdaEquality_alt intEquality equalityIstype hypothesisEquality applyEquality hypothesis because_Cache rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction universeIsType functionIsType productIsType sqequalRule independent_pairFormation lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cut

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).
    (dim(c)  =  1
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}k.  (fst((c  i))  <  snd((c  i))  \mwedge{}  (\mforall{}j:\mBbbN{}k.  ((\mneg{}(j  =  i))  {}\mRightarrow{}  ((fst((c  j)))  =  (snd((c  j))))))))



Date html generated: 2019_10_29-AM-07_52_31
Last ObjectModification: 2019_10_27-PM-10_49_27

Theory : rationals


Home Index