Nuprl Lemma : rat-cube-dimension-1

k:ℕ. ∀c:ℚCube(k).
  uiff(dim(c) 1 ∈ ℤ;(↑Inhabited(c)) ∧ (∃i:ℕk. ((dim(c i) 1 ∈ ℤ) ∧ (∀j:ℕk. ((¬(j i ∈ ℤ))  (dim(c j) 0 ∈ ℤ))))))


Proof




Definitions occuring in Statement :  rat-cube-dimension: dim(c) inhabited-rat-cube: Inhabited(c) rational-cube: Cube(k) rat-interval-dimension: dim(I) int_seg: {i..j-} nat: assert: b uiff: uiff(P;Q) all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  nequal: a ≠ b ∈  assert: b bnot: ¬bb ge: i ≥  rat-interval-dimension: dim(I) subtract: m rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B less_than': less_than'(a;b) decidable: Dec(P) prop: top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) sum_aux: sum_aux(k;v;i;x.f[x]) sum: Σ(f[x] x < k) it: unit: Unit bool: 𝔹 squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k not: ¬A rational-cube: Cube(k) exists: x:A. B[x] so_apply: x[s] nat: so_lambda: λ2x.t[x] int_seg: {i..j-} subtype_rel: A ⊆B false: False true: True bfalse: ff btrue: tt ifthenelse: if then else fi  guard: {T} implies:  Q sq_type: SQType(T) uall: [x:A]. B[x] or: P ∨ Q rat-cube-dimension: dim(c) member: t ∈ T uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) all: x:A. B[x]
Lemmas referenced :  neg_assert_of_eq_int assert-bnot bool_cases_sqequal assert_of_eq_int eq_int_wf ifthenelse_wf sum-is-zero nat_properties istype-universe true_wf squash_wf int_seg_subtype_nat Error :isolate_summand2,  int_seg_cases int_seg_subtype_special iff_weakening_equal equal_wf false_wf add-is-int-iff subtype_rel_self le-add-cancel2 add-commutes add-zero zero-mul add-mul-special minus-one-mul-top add-swap minus-one-mul minus-add add-associates condition-implies-le not-le-2 istype-false int_seg_subtype subtype_rel_function int_term_value_add_lemma itermAdd_wf int_formula_prop_eq_lemma intformeq_wf sum-nat-le-simple decidable__lt decidable__equal_int istype-top sum-unroll equal-wf-base primrec-wf2 istype-less_than int_term_value_subtract_lemma itermSubtract_wf subtract_wf istype-le int_formula_prop_not_lemma intformnot_wf decidable__le sum_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat int_seg_properties uiff_transitivity not_wf bnot_wf assert_wf equal-wf-T-base istype-nat rational-cube_wf istype-void rat-interval-dimension_wf int_seg_wf inhabited-rat-cube_wf istype-assert lelt_wf set_subtype_base rat-cube-dimension_wf istype-int int_subtype_base assert_of_bnot eqff_to_assert eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases
Rules used in proof :  universeEquality hypothesis_subsumption promote_hyp pointwiseFunctionality multiplyEquality applyLambdaEquality closedConclusion baseApply imageMemberEquality isectIsTypeImplies axiomSqEquality lessCases productEquality functionEquality setIsType dependent_set_memberEquality_alt isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation equalityElimination inhabitedIsType imageElimination functionIsType universeIsType productIsType sqequalBase baseClosed setElimination addEquality minusEquality lambdaEquality_alt applyEquality hypothesisEquality equalityIstype voidElimination natural_numberEquality intEquality sqequalRule productElimination independent_functionElimination equalitySymmetry equalityTransitivity independent_isectElimination cumulativity isectElimination instantiate unionElimination dependent_functionElimination extract_by_obid because_Cache sqequalHypSubstitution rename thin hypothesis axiomEquality introduction cut isect_memberFormation_alt independent_pairFormation lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).
    uiff(dim(c)  =  1;(\muparrow{}Inhabited(c))
    \mwedge{}  (\mexists{}i:\mBbbN{}k.  ((dim(c  i)  =  1)  \mwedge{}  (\mforall{}j:\mBbbN{}k.  ((\mneg{}(j  =  i))  {}\mRightarrow{}  (dim(c  j)  =  0))))))



Date html generated: 2019_10_29-AM-07_52_17
Last ObjectModification: 2019_10_27-PM-10_36_38

Theory : rationals


Home Index