Nuprl Lemma : simple-cbva-seq-sqequal-n

L:Top. ∀F1,F2:Base. ∀m,n:ℕ.
  (((m ≤ (n 2))  (F1 ~(n m) F2))  (simple-cbva-seq(L;F1;m) ~n simple-cbva-seq(L;F2;m)))


Proof




Definitions occuring in Statement :  simple-cbva-seq: simple-cbva-seq(L;F;m) nat: top: Top le: A ≤ B all: x:A. B[x] implies:  Q subtract: m add: m natural_number: $n base: Base sqequal_n: ~n t
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q simple-cbva-seq: simple-cbva-seq(L;F;m) cbva-seq: cbva-seq(L;F;m) uall: [x:A]. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top callbyvalueall-seq: callbyvalueall-seq(L;G;F;n;m) le_int: i ≤j lt_int: i <j less_than: a < b squash: T so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] callbyvalueall: callbyvalueall
Lemmas referenced :  decidable__lt eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nat_properties nequal-le-implies zero-add satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf sqequal_n_wf subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma nat_wf base_wf top_wf int_subtype_base btrue_wf assert_of_le_int intformeq_wf int_formula_prop_eq_lemma decidable__equal_int sqequal_n_add add-subtract-cancel le_int_wf int_upper_properties less_than_wf all_wf set_subtype_base set_wf primrec-wf2 mk_lambdas-sqequal-n2 general_arith_equation1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequal_n rule thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination natural_numberEquality addEquality setElimination rename hypothesisEquality hypothesis unionElimination promote_hyp isectElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule dependent_pairFormation instantiate cumulativity independent_functionElimination because_Cache voidElimination hypothesis_subsumption dependent_set_memberEquality independent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality computeAll sqequalZero sqequalnReflexivity functionEquality baseClosed applyLambdaEquality imageElimination baseApply closedConclusion applyEquality

Latex:
\mforall{}L:Top.  \mforall{}F1,F2:Base.  \mforall{}m,n:\mBbbN{}.
    (((m  \mleq{}  (n  +  2))  {}\mRightarrow{}  (F1  \msim{}(n  -  m)  +  2  F2))  {}\mRightarrow{}  (simple-cbva-seq(L;F1;m)  \msim{}n  simple-cbva-seq(L;F2;m)))



Date html generated: 2017_10_01-AM-08_43_15
Last ObjectModification: 2017_07_26-PM-04_29_38

Theory : untyped!computation


Home Index