Nuprl Lemma : simple-cbva-seq-sqequal-n
∀L:Top. ∀F1,F2:Base. ∀m,n:ℕ.
  (((m ≤ (n + 2)) 
⇒ (F1 ~(n - m) + 2 F2)) 
⇒ (simple-cbva-seq(L;F1;m) ~n simple-cbva-seq(L;F2;m)))
Proof
Definitions occuring in Statement : 
simple-cbva-seq: simple-cbva-seq(L;F;m)
, 
nat: ℕ
, 
top: Top
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
base: Base
, 
sqequal_n: s ~n t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
simple-cbva-seq: simple-cbva-seq(L;F;m)
, 
cbva-seq: cbva-seq(L;F;m)
, 
uall: ∀[x:A]. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
ge: i ≥ j 
, 
int_upper: {i...}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
callbyvalueall-seq: callbyvalueall-seq(L;G;F;n;m)
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
callbyvalueall: callbyvalueall
Lemmas referenced : 
decidable__lt, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_upper_subtype_nat, 
false_wf, 
le_wf, 
nat_properties, 
nequal-le-implies, 
zero-add, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
sqequal_n_wf, 
subtract_wf, 
decidable__le, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
nat_wf, 
base_wf, 
top_wf, 
int_subtype_base, 
btrue_wf, 
assert_of_le_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__equal_int, 
sqequal_n_add, 
add-subtract-cancel, 
le_int_wf, 
int_upper_properties, 
less_than_wf, 
all_wf, 
set_subtype_base, 
set_wf, 
primrec-wf2, 
mk_lambdas-sqequal-n2, 
general_arith_equation1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequal_n rule, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
promote_hyp, 
isectElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
dependent_pairFormation, 
instantiate, 
cumulativity, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
independent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
sqequalZero, 
sqequalnReflexivity, 
functionEquality, 
baseClosed, 
applyLambdaEquality, 
imageElimination, 
baseApply, 
closedConclusion, 
applyEquality
Latex:
\mforall{}L:Top.  \mforall{}F1,F2:Base.  \mforall{}m,n:\mBbbN{}.
    (((m  \mleq{}  (n  +  2))  {}\mRightarrow{}  (F1  \msim{}(n  -  m)  +  2  F2))  {}\mRightarrow{}  (simple-cbva-seq(L;F1;m)  \msim{}n  simple-cbva-seq(L;F2;m)))
Date html generated:
2017_10_01-AM-08_43_15
Last ObjectModification:
2017_07_26-PM-04_29_38
Theory : untyped!computation
Home
Index