Nuprl Lemma : nearby-increasing-partition

I:Interval
  ((icompact(I) ∧ iproper(I))
   (∀p:partition(I). ∀e:{e:ℝr0 < e} .  ∃q:partition(I). (frs-increasing(q) ∧ nearby-partitions(e;p;q))))


Proof




Definitions occuring in Statement :  nearby-partitions: nearby-partitions(e;p;q) partition: partition(I) frs-increasing: frs-increasing(p) icompact: icompact(I) iproper: iproper(I) interval: Interval rless: x < y int-to-real: r(n) real: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T exists: x:A. B[x] partition: partition(I) iproper: iproper(I) uall: [x:A]. B[x] prop: uimplies: supposing a icompact: icompact(I) subtype_rel: A ⊆B top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y nearby-partitions: nearby-partitions(e;p;q) satisfiable_int_formula: satisfiable_int_formula(fmla) lelt: i ≤ j < k nat_plus: + sq_exists: x:A [B[x]] rless: x < y int_seg: {i..j-} so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] nil: [] select: L[n] frs-increasing: frs-increasing(p) cand: c∧ B squash: T so_apply: x[s] so_lambda: λ2x.t[x] nat: sq_stable: SqStable(P) so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) less_than: a < b real: rneq: x ≠ y true: True subtract: m decidable: Dec(P) cons: [a b] less_than': less_than'(a;b) ge: i ≥  partitions: partitions(I;p) frs-non-dec: frs-non-dec(L) req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y nequal: a ≠ b ∈  rdiv: (x/y) last: last(L)
Lemmas referenced :  small-reciprocal-real real_wf rless_wf int-to-real_wf partition_wf icompact_wf iproper_wf interval_wf null_wf3 subtype_rel_list top_wf istype-void eqtt_to_assert assert_of_null eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal-wf-T-base list_wf nil_wf nearby-partitions_wf frs-increasing_wf le_witness_for_triv int_seg_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat nat_plus_properties int_seg_properties istype-base stuck-spread length_of_nil_lemma iff_weakening_equal subtype_rel_self squash_wf partitions_wf int_subtype_base istype-int le_wf set_subtype_base istype-nat length_wf_nat sq_stable__partitions list_ind_cons_lemma list_ind_nil_lemma cons_wf int_term_value_add_lemma itermAdd_wf false_wf int_term_value_subtract_lemma itermSubtract_wf subtract-is-int-iff decidable__le int_formula_prop_not_lemma intformnot_wf rless-int rdiv_wf sq_stable__less_than length_wf subtract_wf exists_wf right-endpoint_wf istype-assert last_wf le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le not-lt-2 decidable__lt length_of_cons_lemma product_subtype_list list-cases istype-false select_wf left-endpoint_wf or_wf not_wf list_induction last-cons non_neg_length rless-cases istype-less_than last_cons true_wf rleq_wf add-subtract-cancel istype-universe less_than_wf add-swap istype-le add-member-int_seg2 select_cons_tl rleq_transitivity add-is-int-iff nat_plus_wf req-iff-rsub-is-0 rsub_wf rless-implies-rless real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma int_formula_prop_eq_lemma intformeq_wf imax_nat_plus imax_wf mul_nat_plus int_term_value_mul_lemma itermMultiply_wf multiply-is-int-iff multiply_nat_plus rless_transitivity2 less_than_transitivity1 rleq-int-fractions imax_ub rleq_functionality_wrt_implies rleq_weakening_equal less_than_transitivity2 nat_plus_subtype_nat mul_preserves_le int_entire_a rneq-int mklist_length select-mklist mklist_wf rless_functionality_wrt_implies rsub_functionality_wrt_rleq rinv_wf2 rmul_wf rmul_preserves_rless rless_functionality req_transitivity rmul-rinv3 real_term_value_mul_lemma frs-increasing-non-dec rleq_weakening rleq_weakening_rless decidable__equal_int rleq_functionality req_weakening rleq-int-fractions2 rabs_wf rabs_functionality rabs-of-nonneg radd_wf radd_functionality_wrt_rleq real_term_value_add_lemma radd_functionality_wrt_rless1 itermMinus_wf rminus_wf real_term_value_minus_lemma rabs-rminus lt_int_wf assert_of_lt_int add-member-int_seg1 nat_properties int_seg_subtype_nat rmul_functionality rmul-rinv radd_functionality rminus_functionality rminus-int radd-preserves-rless req_inversion radd-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality setElimination rename independent_functionElimination setIsType universeIsType hypothesis isectElimination natural_numberEquality independent_isectElimination sqequalRule productIsType applyEquality lambdaEquality_alt isect_memberEquality_alt voidElimination because_Cache inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation_alt equalityIstype promote_hyp instantiate cumulativity baseClosed productEquality applyLambdaEquality hyp_replacement functionIsTypeImplies independent_pairFormation int_eqEquality approximateComputation universeEquality imageMemberEquality imageElimination closedConclusion intEquality equalityIsType4 dependent_set_memberEquality_alt unionIsType equalityIsType3 functionIsType baseApply pointwiseFunctionality inrFormation_alt equalityIsType1 minusEquality addEquality hypothesis_subsumption functionEquality inlFormation_alt multiplyEquality functionExtensionality

Latex:
\mforall{}I:Interval
    ((icompact(I)  \mwedge{}  iproper(I))
    {}\mRightarrow{}  (\mforall{}p:partition(I).  \mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
                \mexists{}q:partition(I).  (frs-increasing(q)  \mwedge{}  nearby-partitions(e;p;q))))



Date html generated: 2019_10_29-AM-10_48_37
Last ObjectModification: 2018_12_13-PM-01_45_19

Theory : reals


Home Index