Nuprl Lemma : converges-to-rexp
∀x:ℝ. lim n→∞.approx-rexp(x;n) = e^x
Proof
Definitions occuring in Statement : 
approx-rexp: approx-rexp(x;n), 
rexp: e^x, 
converges-to: lim n→∞.x[n] = y, 
real: ℝ, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
approx-rexp: approx-rexp(x;n), 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
real: ℝ, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
and: P ∧ Q, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
guard: {T}, 
false: False, 
prop: ℙ, 
has-value: (a)↓, 
decidable: Dec(P), 
or: P ∨ Q, 
top: Top, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
nat: ℕ, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
ge: i ≥ j , 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
efficient-exp-ext, 
fastexp: i^n, 
uiff: uiff(P;Q), 
cand: A c∧ B, 
rgt: x > y, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
subtype_rel: A ⊆r B, 
rexp: e^x, 
pi1: fst(t), 
exp-exists-ext, 
int-to-real: r(n), 
divide: n ÷ m, 
rsum: Σ{x[k] | n≤k≤m}, 
canonical-bound: canonical-bound(r), 
absval: |i|, 
rmul: a * b, 
rabs: |x|, 
accelerate: accelerate(k;f), 
imax: imax(a;b), 
ifthenelse: if b then t else f fi , 
le_int: i ≤z j, 
bnot: ¬bb, 
lt_int: i <z j, 
btrue: tt, 
bfalse: ff, 
reg-seq-mul: reg-seq-mul(x;y), 
int-rdiv: (a)/k1, 
fact: (n)!, 
primrec: primrec(n;b;c), 
primtailrec: primtailrec(n;i;b;f), 
subtract: n - m, 
rnexp: x^k1, 
eq_int: (i =z j), 
canon-bnd: canon-bnd(x), 
genrec: genrec, 
rlessw: rlessw(x;y), 
quick-find: quick-find(p;n), 
radd: a + b, 
rdiv: (x/y), 
rinv: rinv(x), 
mu-ge: mu-ge(f;n), 
reg-seq-inv: reg-seq-inv(x), 
reg-seq-list-add: reg-seq-list-add(L), 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L), 
cons: [a / b], 
reg-seq-adjust: reg-seq-adjust(n;x), 
nil: [], 
it: ⋅, 
exp-ratio: exp-ratio(a;b;n;p;q), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
map: map(f;as), 
list_ind: list_ind, 
from-upto: [n, m), 
radd-list: radd-list(L), 
length: ||as||, 
req_int_terms: t1 ≡ t2, 
sq_stable: SqStable(P), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
assert: ↑b, 
int_upper: {i...}, 
unit: Unit, 
bool: 𝔹, 
converges-to: lim n→∞.x[n] = y, 
rneq: x ≠ y, 
rational-lower-approx: (below x within 1/n)
Lemmas referenced : 
cheap-real-upper-bound, 
divide_wfa, 
istype-less_than, 
subtype_base_sq, 
int_subtype_base, 
istype-int, 
nequal_wf, 
value-type-has-value, 
int-value-type, 
rleq_wf, 
int-to-real_wf, 
real_wf, 
decidable__lt, 
istype-top, 
istype-void, 
less_than_wf, 
rless_transitivity2, 
rexp-increasing, 
rless-int, 
rleq_weakening_rless, 
rexp_wf, 
rless_functionality, 
req_weakening, 
rexp0, 
rexp-non-decreasing, 
fastexp_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
nat_properties, 
ge_wf, 
le_witness_for_triv, 
subtract-1-ge-0, 
istype-false, 
rleq-int, 
rleq_functionality, 
rexp-radd, 
subtract_wf, 
radd_wf, 
rmul_wf, 
subtract-add-cancel, 
req_functionality, 
rexp_functionality, 
radd-int, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
rmul_functionality_wrt_rleq2, 
rexp-positive, 
itermMultiply_wf, 
nat_plus_properties, 
rmul_preserves_rless, 
rmul-int, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
exp-positive-stronger, 
exp-fastexp, 
exp_step, 
sq_stable__less_than, 
int_term_value_mul_lemma, 
exp_wf2, 
le_wf, 
subtype_rel_sets_simple, 
exp_wf_nat_plus, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
nat_plus_wf, 
false_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
add-is-int-iff, 
divide_wf, 
add_nat_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int_upper_properties, 
div_rem_sum2, 
decidable__equal_int, 
nat_plus_subtype_nat, 
rem_bounds_1, 
rless_wf, 
rdiv_wf, 
mul_nzero, 
int_entire_a, 
int-rdiv_wf, 
rational-approx_wf, 
mul_nat_plus, 
rsub_wf, 
rabs_wf, 
set-value-type, 
int_upper_wf, 
zero-add, 
nequal-le-implies, 
upper_subtype_nat, 
neg_assert_of_eq_int, 
assert_of_eq_int, 
eq_int_wf, 
rneq-int, 
rational-lower-approx_wf, 
rational-lower-approx-property, 
rational-approx-property, 
rabs-difference-symmetry, 
mul_bounds_1b, 
rmax_wf, 
rabs-rexp-difference-bound, 
rleq-implies-rleq, 
rmul_functionality, 
rabs-of-nonneg, 
mul-commutes, 
rneq_functionality, 
rinv_wf2, 
radd-preserves-rleq, 
req_transitivity, 
radd_functionality, 
rinv_functionality2, 
req_inversion, 
rinv-of-rmul, 
rinv-as-rdiv, 
real_term_value_add_lemma, 
rmul_comm, 
rmul_preserves_rleq, 
rmul-rinv, 
rmax-req2, 
radd_functionality_wrt_rleq, 
r-triangle-inequality2, 
radd-rdiv, 
rdiv_functionality, 
rleq-int-fractions, 
mul_preserves_le, 
efficient-exp-ext, 
exp-exists-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
addEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
dependent_set_memberEquality_alt, 
closedConclusion, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
equalityIstype, 
sqequalBase, 
universeIsType, 
inhabitedIsType, 
callbyvalueReduce, 
unionElimination, 
lessCases, 
isect_memberFormation_alt, 
axiomSqEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
imageElimination, 
productElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
intWeakElimination, 
functionIsTypeImplies, 
productIsType, 
inlFormation_alt, 
dependent_set_memberFormation_alt, 
multiplyEquality, 
applyLambdaEquality, 
promote_hyp, 
equalityElimination, 
baseApply, 
pointwiseFunctionality, 
divideEquality, 
remainderEquality, 
inrFormation_alt, 
functionIsType, 
hypothesis_subsumption, 
int_eqReduceFalseSq, 
int_eqReduceTrueSq
Latex:
\mforall{}x:\mBbbR{}.  lim  n\mrightarrow{}\minfty{}.approx-rexp(x;n)  =  e\^{}x
Date html generated:
2019_10_31-AM-06_11_13
Last ObjectModification:
2019_04_03-PM-08_17_14
Theory : reals_2
Home
Index