Nuprl Lemma : mem_lmin

s:DSet. ∀as,bs:|s| List. ∀c:|s|.  c ∈b lmin(s;as;bs) (c ∈b as) ∧b (c ∈b bs)


Proof




Definitions occuring in Statement :  lmin: lmin(s;as;bs) mem: a ∈b as list: List band: p ∧b q bool: 𝔹 all: x:A. B[x] equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a band: p ∧b q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False iff: ⇐⇒ Q rev_implies:  Q prop: dset: DSet gt: i > j decidable: Dec(P) less_than: a < b squash: T le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top true: True subtype_rel: A ⊆B
Lemmas referenced :  iff_imp_equal_bool mem_wf lmin_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot bfalse_wf mem_iff_count_nzero assert_wf iff_weakening_uiff assert_of_band set_car_wf list_wf dset_wf le_int_wf count_wf equal-wf-T-base le_wf decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf gt_wf lt_int_wf less_than_wf bnot_wf uiff_transitivity assert_of_le_int assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int imin_unfold iff_weakening_equal imin_wf squash_wf true_wf count_lmin subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule dependent_pairFormation_alt equalityIsType1 promote_hyp instantiate cumulativity independent_functionElimination because_Cache voidElimination independent_pairFormation universeIsType productIsType productEquality isect_memberEquality_alt setElimination rename baseClosed imageElimination natural_numberEquality approximateComputation lambdaEquality_alt int_eqEquality applyEquality imageMemberEquality universeEquality

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.  \mforall{}c:|s|.    c  \mmember{}\msubb{}  lmin(s;as;bs)  =  (c  \mmember{}\msubb{}  as)  \mwedge{}\msubb{}  (c  \mmember{}\msubb{}  bs)



Date html generated: 2019_10_16-PM-01_04_29
Last ObjectModification: 2018_10_08-AM-10_22_39

Theory : list_2


Home Index