Nuprl Lemma : oal_lt_trichot

s:LOSet. ∀g:OGrp. ∀ps,qs:|oal(s;g)|.  ((ps << qs) ∨ (ps qs ∈ |oal(s;g)|) ∨ (qs << ps))


Proof




Definitions occuring in Statement :  oal_lt: ps << qs oalist: oal(a;b) all: x:A. B[x] or: P ∨ Q equal: t ∈ T ocgrp: OGrp loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q implies:  Q ocgrp: OGrp prop: dset: DSet or: P ∨ Q oal_blt: ps <<b qs oal_grp: oal_grp(s;g) grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) infix_ap: y grp_inv: ~ grp_id: e squash: T abdgrp: AbDGrp abgrp: AbGrp grp: Group{i} mon: Mon oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| dset_list: List set_prod: s × t dset_of_mon: g↓set true: True imon: IMonoid
Lemmas referenced :  ocgrp_wf loset_wf ocgrp_subtype_abdgrp ocmon_subtype_abdmonoid ocgrp_subtype_ocmon subtype_rel_transitivity ocmon_wf abdmonoid_wf assert_of_oal_blt oal_lt_wf or_wf equal_wf set_car_wf oalist_wf dset_wf assert_wf oal_blt_wf oal_bpos_trichot oal_merge_wf2 oal_neg_wf2 oal_bpos_wf squash_wf true_wf grp_car_wf oal_grp_wf abdgrp_wf grp_op_wf infix_ap_wf iff_weakening_equal grp_sig_wf monoid_p_wf grp_id_wf inverse_wf grp_inv_wf comm_wf eqfun_p_wf grp_eq_wf grp_subtype_igrp abgrp_subtype_grp abdgrp_subtype_abgrp abgrp_wf grp_wf igrp_wf mon_assoc grp_inverse mon_ident grp_inv_thru_op grp_inv_inv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis hypothesisEquality applyEquality sqequalHypSubstitution sqequalRule independent_pairFormation thin instantiate isectElimination independent_isectElimination productElimination addLevel orFunctionality dependent_functionElimination independent_functionElimination setElimination rename lambdaEquality because_Cache unionElimination inlFormation inrFormation imageElimination equalityTransitivity equalitySymmetry universeEquality functionEquality natural_numberEquality imageMemberEquality baseClosed setEquality cumulativity hyp_replacement applyLambdaEquality

Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.  \mforall{}ps,qs:|oal(s;g)|.    ((ps  <<  qs)  \mvee{}  (ps  =  qs)  \mvee{}  (qs  <<  ps))



Date html generated: 2017_10_01-AM-10_04_19
Last ObjectModification: 2017_03_03-PM-01_07_25

Theory : polynom_2


Home Index