Nuprl Lemma : oal_bpos_trichot

s:LOSet. ∀g:OGrp. ∀rs:|oal(s;g)|.  ((↑pos(rs)) ∨ (rs 00 ∈ |oal(s;g)|) ∨ (↑pos(--rs)))


Proof




Definitions occuring in Statement :  oal_bpos: pos(ps) oal_neg: --ps oal_nil: 00 oalist: oal(a;b) assert: b all: x:A. B[x] or: P ∨ Q equal: t ∈ T ocgrp: OGrp loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a dset: DSet oal_bpos: pos(ps) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set band: p ∧b q implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q iff: ⇐⇒ Q bnot: ¬bb ifthenelse: if then else fi  bfalse: ff assert: b or: P ∨ Q list: List grp_car: |g| loset: LOSet poset: POSet{i} qoset: QOSet ocgrp: OGrp ocmon: OCMon abmonoid: AbMon mon: Mon prop: pi2: snd(t) false: False exists: x:A. B[x] sq_type: SQType(T) not: ¬A rev_implies:  Q respects-equality: respects-equality(S;T) squash: T true: True
Lemmas referenced :  omon_inc ocmon_subtype_omon ocgrp_subtype_ocmon subtype_rel_transitivity ocgrp_wf ocmon_wf omon_wf ocgrp_abdgrp set_car_wf oalist_wf loset_wf oal_neg_wf2 oal_null_wf eqtt_to_assert assert_of_oal_null subtype_rel_self list_wf grp_car_wf mon_subtype_grp_sig dmon_subtype_mon abdmonoid_dmon ocmon_subtype_abdmonoid abdmonoid_wf dmon_wf mon_wf grp_sig_wf assert_wf sd_ordered_wf map_wf not_wf mem_wf dset_of_mon_wf grp_id_wf dset_of_mon_wf0 equal_functionality_wrt_subtype_rel2 istype-void eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot istype-assert grp_blt_wf oal_lv_wf oal_nil_wf oal_neg_eq_nil iff_weakening_uiff grp_lt_wf assert_of_grp_blt subtype-respects-equality grp_inv_wf uiff_transitivity2 squash_wf true_wf oal_lv_neg grp_lt_trichot oal_lv_nid grp_lt_shift_right mon_ident iabmonoid_subtype_imon abmonoid_subtype_iabmonoid abdmonoid_abmonoid abmonoid_wf iabmonoid_wf imon_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality hypothesis instantiate isectElimination independent_isectElimination sqequalRule universeIsType lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry unionElimination equalityElimination productElimination independent_functionElimination because_Cache inrFormation_alt inlFormation_alt setEquality productEquality productIsType dependent_pairFormation_alt equalityIstype promote_hyp cumulativity voidElimination unionIsType setIsType functionIsType imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.  \mforall{}rs:|oal(s;g)|.    ((\muparrow{}pos(rs))  \mvee{}  (rs  =  00)  \mvee{}  (\muparrow{}pos(--rs)))



Date html generated: 2019_10_16-PM-01_08_32
Last ObjectModification: 2018_11_27-AM-10_31_02

Theory : polynom_2


Home Index