Nuprl Lemma : oal_bpos_trichot
∀s:LOSet. ∀g:OGrp. ∀rs:|oal(s;g)|.  ((↑pos(rs)) ∨ (rs = 00 ∈ |oal(s;g)|) ∨ (↑pos(--rs)))
Proof
Definitions occuring in Statement : 
oal_bpos: pos(ps), 
oal_neg: --ps, 
oal_nil: 00, 
oalist: oal(a;b), 
assert: ↑b, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
equal: s = t ∈ T, 
ocgrp: OGrp, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
uimplies: b supposing a, 
dset: DSet, 
oal_bpos: pos(ps), 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
dset_list: s List, 
set_prod: s × t, 
dset_of_mon: g↓set, 
band: p ∧b q, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
assert: ↑b, 
or: P ∨ Q, 
list: T List, 
grp_car: |g|, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
ocgrp: OGrp, 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
prop: ℙ, 
pi2: snd(t), 
false: False, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
not: ¬A, 
rev_implies: P ⇐ Q, 
respects-equality: respects-equality(S;T), 
squash: ↓T, 
true: True
Lemmas referenced : 
omon_inc, 
ocmon_subtype_omon, 
ocgrp_subtype_ocmon, 
subtype_rel_transitivity, 
ocgrp_wf, 
ocmon_wf, 
omon_wf, 
ocgrp_abdgrp, 
set_car_wf, 
oalist_wf, 
loset_wf, 
oal_neg_wf2, 
oal_null_wf, 
eqtt_to_assert, 
assert_of_oal_null, 
subtype_rel_self, 
list_wf, 
grp_car_wf, 
mon_subtype_grp_sig, 
dmon_subtype_mon, 
abdmonoid_dmon, 
ocmon_subtype_abdmonoid, 
abdmonoid_wf, 
dmon_wf, 
mon_wf, 
grp_sig_wf, 
assert_wf, 
sd_ordered_wf, 
map_wf, 
not_wf, 
mem_wf, 
dset_of_mon_wf, 
grp_id_wf, 
dset_of_mon_wf0, 
equal_functionality_wrt_subtype_rel2, 
istype-void, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
istype-assert, 
grp_blt_wf, 
oal_lv_wf, 
oal_nil_wf, 
oal_neg_eq_nil, 
iff_weakening_uiff, 
grp_lt_wf, 
assert_of_grp_blt, 
subtype-respects-equality, 
grp_inv_wf, 
uiff_transitivity2, 
squash_wf, 
true_wf, 
oal_lv_neg, 
grp_lt_trichot, 
oal_lv_nid, 
grp_lt_shift_right, 
mon_ident, 
iabmonoid_subtype_imon, 
abmonoid_subtype_iabmonoid, 
abdmonoid_abmonoid, 
abmonoid_wf, 
iabmonoid_wf, 
imon_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
isectElimination, 
independent_isectElimination, 
sqequalRule, 
universeIsType, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_functionElimination, 
because_Cache, 
inrFormation_alt, 
inlFormation_alt, 
setEquality, 
productEquality, 
productIsType, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
cumulativity, 
voidElimination, 
unionIsType, 
setIsType, 
functionIsType, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.  \mforall{}rs:|oal(s;g)|.    ((\muparrow{}pos(rs))  \mvee{}  (rs  =  00)  \mvee{}  (\muparrow{}pos(--rs)))
Date html generated:
2019_10_16-PM-01_08_32
Last ObjectModification:
2018_11_27-AM-10_31_02
Theory : polynom_2
Home
Index