Nuprl Lemma : es-local-le-pred_wf

[Info:Type]. ∀[P:es:EO+(Info) ─→ E ─→ 𝔹].  (≤(P) ∈ EClass({e:E| ↑(P es e)} ))


Proof




Definitions occuring in Statement :  es-local-le-pred: (P) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ─→ B[x] universe: Type
Lemmas :  es-causl-swellfnd event-ordering+_subtype nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf es-E_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf bool_wf eqtt_to_assert single-bag_wf assert_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot es-first_wf2 empty-bag_wf es-pred_wf es-pred-locl es-causl_weakening decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul event-ordering+_wf top_wf

Latex:
\mforall{}[Info:Type].  \mforall{}[P:es:EO+(Info)  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbB{}].    (\mleq{}(P)  \mmember{}  EClass(\{e:E|  \muparrow{}(P  es  e)\}  ))



Date html generated: 2015_07_20-PM-04_07_51
Last ObjectModification: 2015_01_27-PM-09_51_58

Home Index