Nuprl Lemma : es-local-prior-state_wf
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[A,T:Type]. ∀[X:EClass(A)]. ∀[base:T]. ∀[f:T ─→ A ─→ T]. ∀[e:E].
  (prior-state(f;base;X;e) ∈ T)
Proof
Definitions occuring in Statement : 
es-local-prior-state: prior-state(f;base;X;e)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
es-causl-swellfnd, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
int_seg_subtype-nat, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__equal_int, 
subtype_rel-int_seg, 
le_weakening, 
int_seg_properties, 
le_wf, 
nat_wf, 
zero-le-nat, 
lelt_wf, 
es-causl_wf, 
in-eclass_wf, 
es-prior-interface_wf1, 
es-interface-subtype_rel2, 
es-E_wf, 
event-ordering+_subtype, 
top_wf, 
subtype_top, 
es-E-interface_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
decidable__lt, 
not-equal-2, 
le-add-cancel-alt, 
not-le-2, 
sq_stable__le, 
add-mul-special, 
zero-mul, 
eclass_wf, 
event-ordering+_wf, 
eclass-val_wf2, 
es-prior-interface_wf, 
es-prior-interface-causl, 
eclass-val_wf, 
es-E-interface-property
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A,T:Type].  \mforall{}[X:EClass(A)].  \mforall{}[base:T].  \mforall{}[f:T  {}\mrightarrow{}  A  {}\mrightarrow{}  T].  \mforall{}[e:E].
    (prior-state(f;base;X;e)  \mmember{}  T)
Date html generated:
2015_07_21-PM-03_42_11
Last ObjectModification:
2015_01_27-PM-06_27_58
Home
Index