Nuprl Lemma : global-eo-info-before

[L:(Id × Top) List]. ∀[e:E].  (map(λe.info(e);before(e)) map(λx.(snd(x));filter(λx.fst(x) loc(e);firstn(e;L))))


Proof




Definitions occuring in Statement :  global-eo: global-eo(L) es-info: info(e) es-before: before(e) es-loc: loc(e) es-E: E eq_id: b Id: Id filter: filter(P;l) firstn: firstn(n;as) map: map(f;as) list: List uall: [x:A]. B[x] top: Top pi1: fst(t) pi2: snd(t) lambda: λx.A[x] product: x:A × B[x] sqequal: t
Lemmas :  upto_wf list_wf int_seg_wf global-eo-info global-eo-loc nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base colength_wf_list list-cases filter_nil_lemma map_nil_lemma product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel nat_wf decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-commutes le_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base filter_cons_lemma map_cons_lemma eq_id_wf select_wf less_than_transitivity2 le_weakening2 bool_wf eqtt_to_assert assert-eq-id Id_wf top_wf length_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot

Latex:
\mforall{}[L:(Id  \mtimes{}  Top)  List].  \mforall{}[e:E].
    (map(\mlambda{}e.info(e);before(e))  \msim{}  map(\mlambda{}x.(snd(x));filter(\mlambda{}x.fst(x)  =  loc(e);firstn(e;L))))



Date html generated: 2015_07_21-PM-04_36_30
Last ObjectModification: 2015_01_27-PM-05_07_21

Home Index