Nuprl Lemma : loop-class2_wf
∀[Info,B:Type]. ∀[X:EClass(B ─→ B)]. ∀[init:Id ─→ bag(B)]. (loop-class2(X;init) ∈ EClass(B))
Proof
Definitions occuring in Statement :
loop-class2: loop-class2(X;init)
,
eclass: EClass(A[eo; e])
,
Id: Id
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ─→ B[x]
,
universe: Type
,
bag: bag(T)
Lemmas :
es-causl-swellfnd,
nat_properties,
less_than_transitivity1,
less_than_irreflexivity,
ge_wf,
less_than_wf,
int_seg_wf,
int_seg_subtype-nat,
decidable__le,
subtract_wf,
false_wf,
not-ge-2,
less-iff-le,
condition-implies-le,
minus-one-mul,
zero-add,
minus-add,
minus-minus,
add-associates,
add-swap,
add-commutes,
add_functionality_wrt_le,
add-zero,
le-add-cancel,
decidable__equal_int,
subtype_rel-int_seg,
le_weakening,
int_seg_properties,
le_wf,
nat_wf,
zero-le-nat,
lelt_wf,
es-causl_wf,
equal_wf,
decidable__lt,
not-equal-2,
le-add-cancel-alt,
not-le-2,
sq_stable__le,
add-mul-special,
zero-mul,
es-E_wf,
event-ordering+_subtype,
void_wf,
Id_wf,
bag_wf,
eclass_wf,
event-ordering+_wf,
class-ap_wf,
bag-combine_wf,
bag-map_wf,
es-local-pred_wf2,
es-locl_wf,
lt_int_wf,
es-causl_weakening,
bag-size_wf,
or_wf,
sq_exists_wf,
assert_wf,
all_wf,
not_wf,
es-loc_wf
Latex:
\mforall{}[Info,B:Type]. \mforall{}[X:EClass(B {}\mrightarrow{} B)]. \mforall{}[init:Id {}\mrightarrow{} bag(B)]. (loop-class2(X;init) \mmember{} EClass(B))
Date html generated:
2015_07_21-PM-02_32_19
Last ObjectModification:
2015_01_27-PM-09_49_53
Home
Index