Nuprl Lemma : nth_tl-es-open-interval

[es:EO]. ∀[e1,e2:E]. ∀[n:ℕ||(e1, e2)||].
  nth_tl(n 1;(e1, e2)) ((e1, e2)[n], e2) ∈ (E List) supposing loc(e1) loc(e2) ∈ Id


Proof




Definitions occuring in Statement :  es-open-interval: (e, e') es-loc: loc(e) es-E: E event_ordering: EO Id: Id select: L[n] nth_tl: nth_tl(n;as) length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] add: m natural_number: $n equal: t ∈ T
Lemmas :  es-locl-trichotomy es-open-interval-nil decidable__assert es-first_wf2 not_wf assert_wf es-le_wf es-pred_wf es-pred-locl es-locl_transitivity2 es-le_weakening_eq es-le_weakening length_of_nil_lemma es-pred-exists-between es-open-interval_wf es-E_wf list_wf equal_wf es-open-interval-closed es-causl_irreflexivity es-causle_weakening_locl es-causle_weakening es-causl_transitivity2 es-locl_irreflexivity es-causl_weakening iff_weakening_equal es-pred_property squash_wf es-le-self le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes zero-add minus-one-mul minus-add condition-implies-le decidable__lt length_of_cons_lemma product_subtype_list less_than_irreflexivity le_weakening length_wf less_than_transitivity1 le_wf list-cases false_wf select_wf tl_wf reduce_tl_cons_lemma nat_wf length_wf_nat es-closed-open-interval-decomp es-loc_wf and_wf es-loc-pred btrue_neq_bfalse assert_elim es-locl-first subtract_wf less-iff-le add-swap le-add-cancel2 trivial-int-eq1 nth_tl_decomp le_weakening2 member-es-open-interval decidable__le not-le-2 minus-minus less_than_wf sq_stable__le nth_tl_wf cons_wf es-closed-open-interval_wf es-pred-one-one subtract-is-less es-open-interval-ordered-inst lelt_wf pred-member-es-open-interval select_member assert_functionality_wrt_uiff
\mforall{}[es:EO].  \mforall{}[e1,e2:E].  \mforall{}[n:\mBbbN{}||(e1,  e2)||].
    nth\_tl(n  +  1;(e1,  e2))  =  ((e1,  e2)[n],  e2)  supposing  loc(e1)  =  loc(e2)



Date html generated: 2015_07_17-AM-08_44_11
Last ObjectModification: 2015_07_16-AM-09_51_50

Home Index