Nuprl Lemma : int-decr-map-add-prop

[Value:Type]. ∀[m:int-decr-map-type(Value)]. ∀[k1,k2:ℤ]. ∀[v:Value].
  (int-decr-map-find(k1;int-decr-map-add(k2;v;m))
  if (k1 =z k2) ∧b bint-decr-map-inDom(k2;m)) then inl else int-decr-map-find(k1;m) fi 
  ∈ (Value?))


Proof




Definitions occuring in Statement :  int-decr-map-add: int-decr-map-add(k;v;m) int-decr-map-inDom: int-decr-map-inDom(k;m) int-decr-map-find: int-decr-map-find(k;m) int-decr-map-type: int-decr-map-type(Value) band: p ∧b q bnot: ¬bb ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] unit: Unit inl: inl x union: left right int: universe: Type equal: t ∈ T
Lemmas :  list_ind_nil_lemma list_ind_cons_lemma value-type-has-value int-value-type subtract_wf bool_cases_sqequal eq_int_wf sqequal-tt-to-assert assert_of_eq_int sqequal-ff-to-assert neg_assert_of_eq_int lt_int_wf assert_of_lt_int it_wf less_than_wf insert-combine-cons int-decr-map-inDom_wf l-ordered_wf gt_wf find-combine-cons int-decr-map-inDom-prop2 l_all_iff l_member_wf not_wf equal-wf-base-T int_subtype_base cons_member unit_wf2 or_wf equal_wf l-ordered-cons find-combine_wf int-decr-map-inDom-cons subtype_base_sq bool_wf bool_subtype_base iff_imp_equal_bool eqtt_to_assert bnot_wf bfalse_wf equal-wf-base assert_wf false_wf iff_transitivity iff_weakening_uiff assert_of_band assert_of_bnot assert_elim btrue_neq_bfalse iff_wf
\mforall{}[Value:Type].  \mforall{}[m:int-decr-map-type(Value)].  \mforall{}[k1,k2:\mBbbZ{}].  \mforall{}[v:Value].
    (int-decr-map-find(k1;int-decr-map-add(k2;v;m))
    =  if  (k1  =\msubz{}  k2)  \mwedge{}\msubb{}  (\mneg{}\msubb{}int-decr-map-inDom(k2;m))  then  inl  v  else  int-decr-map-find(k1;m)  fi  )



Date html generated: 2015_07_17-AM-08_23_32
Last ObjectModification: 2015_04_02-PM-05_44_29

Home Index