Nuprl Lemma : hdf-parallel-transformation2-3

[L,G,H,S,init,out:Top]. ∀[m:ℕ].
  (inl a.<inr Ax out>|| fix((λmk-hdf,s. (inl a.cbva_seq(L[s;a]; λg.<case H[g;s]
                                                                             of inl() =>
                                                                             mk-hdf S[g;s]
                                                                             inr() =>
                                                                             inr Ax 
                                                                           G[g]
                                                                           >m))))) 
                              init fix((λmk-hdf,s. (inl a.cbva_seq(λn.if (n =z m)
                                                                          then case fst(s)
                                                                                of inl(x) =>
                                                                                mk_lambdas_fun(λg.(out G[g]);m)
                                                                                inr(x) =>
                                                                                mk_lambdas_fun(λg.G[g];m)
                                                                          else L[snd(s);a] n
                                                                          fi ; λg.<case H[partial_ap(g;m 1;m);snd(s)]
                                                                                    of inl() =>
                                                                                    mk-hdf 
                                                                                    <inr Ax 
                                                                                    S[partial_ap(g;m 1;m);snd(s)]
                                                                                    >
                                                                                    inr() =>
                                                                                    inr Ax 
                                                                                  select_fun_last(g;m)
                                                                                  >1))))) 
                                     <inl Ax, init>)


Proof




Definitions occuring in Statement :  hdf-parallel: || Y nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] so_apply: x[s] pi1: fst(t) pi2: snd(t) apply: a fix: fix(F) lambda: λx.A[x] pair: <a, b> decide: case of inl(x) => s[x] inr(y) => t[y] inr: inr  inl: inl x add: m natural_number: $n sqequal: t axiom: Ax bag-append: as bs select_fun_last: select_fun_last(g;m) partial_ap: partial_ap(g;n;m) mk_lambdas_fun: mk_lambdas_fun(F;m) cbva_seq: cbva_seq(L; F; m)
Lemmas :  lifting-strict-spread has-value_wf_base base_wf is-exception_wf lifting-strict-int_eq top_wf lifting-strict-decide empty_bag_append_lemma strict4-spread lifting-strict-callbyvalueall cbva_seq-spread cbva_seq_extend decide_bfalse_lemma nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf nat_wf strictness-apply lifting-strict-less bottom-sqle decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel fun_exp_unroll le_weakening2 le_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int le_weakening eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int lt_int_wf assert_of_lt_int bottom_diverge exception-not-bottom set_subtype_base int_subtype_base
\mforall{}[L,G,H,S,init,out:Top].  \mforall{}[m:\mBbbN{}].
    (inl  (\mlambda{}a.<inr  Ax  ,  out>)  ||  fix((\mlambda{}mk-hdf,s.  (inl  (\mlambda{}a.cbva\_seq(L[s;a];  \mlambda{}g.<case  H[g;s]
                                                                                                                                                          of  inl()  =>
                                                                                                                                                          mk-hdf  S[g;s]
                                                                                                                                                          |  inr()  =>
                                                                                                                                                          inr  Ax 
                                                                                                                                                      ,  G[g]
                                                                                                                                                      >  m))))) 
                                                            init 
    \msim{}  fix((\mlambda{}mk-hdf,s.  (inl  (\mlambda{}a.cbva\_seq(\mlambda{}n.if  (n  =\msubz{}  m)
                                                                                  then  case  fst(s)
                                                                                              of  inl(x)  =>
                                                                                              mk\_lambdas\_fun(\mlambda{}g.(out  +  G[g]);m)
                                                                                              |  inr(x)  =>
                                                                                              mk\_lambdas\_fun(\mlambda{}g.G[g];m)
                                                                                  else  L[snd(s);a]  n
                                                                                  fi  ;  \mlambda{}g.<case  H[partial\_ap(g;m  +  1;m);snd(s)]
                                                                                                      of  inl()  =>
                                                                                                      mk-hdf  <inr  Ax  ,  S[partial\_ap(g;m  +  1;m);snd(s)]>
                                                                                                      |  inr()  =>
                                                                                                      inr  Ax 
                                                                                                  ,  select\_fun\_last(g;m)
                                                                                                  >  m  +  1))))) 
        <inl  Ax,  init>)



Date html generated: 2015_07_17-AM-08_09_34
Last ObjectModification: 2015_06_19-PM-00_53_18

Home Index