Nuprl Lemma : cubical-interval-non-trivial-box

[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
  ∀bx:open_box(cubical-interval();I;J;x;i). ∀h:name-morph(I;[]).
    ((¬(J [] ∈ (nameset(I) List)))
     (filter(λf.(h (fst(f)) =z fst(snd(f)));bx)
       []
       ∈ ({x:{f:I-face(cubical-interval();I)| (f ∈ bx)} | ↑(h (fst(x)) =z fst(snd(x)))}  List))))


Proof




Definitions occuring in Statement :  open_box: open_box(X;I;J;x;i) I-face: I-face(X;I) cubical-interval: cubical-interval() name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname l_member: (x ∈ l) filter: filter(P;l) nil: [] list: List int_seg: {i..j-} assert: b eq_int: (i =z j) uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) all: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q not: ¬A false: False prop: subtype_rel: A ⊆B uimplies: supposing a nameset: nameset(L) open_box: open_box(X;I;J;x;i) and: P ∧ Q name-morph: name-morph(I;J) I-face: I-face(X;I) pi1: fst(t) pi2: snd(t) int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) top: Top or: P ∨ Q cons: [a b] iff: ⇐⇒ Q rev_implies:  Q l_exists: (∃x∈L. P[x]) exists: x:A. B[x] l_all: (∀x∈L.P[x]) guard: {T} lelt: i ≤ j < k sq_stable: SqStable(P) squash: T coordinate_name: Cname int_upper: {i...} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) less_than: a < b rev_uimplies: rev_uimplies(P;Q) face-name: face-name(f) true: True
Lemmas referenced :  equal-wf-T-base list_wf filter_type list-subtype not_wf nameset_wf name-morph_wf nil_wf coordinate_name_wf open_box_wf cubical-interval_wf subtype_rel_list int_seg_wf I-face_wf l_member_wf assert_wf eq_int_wf l_all_wf2 null-filter2 null_wf3 filter_wf5 top_wf assert_of_null list-cases product_subtype_list cons_member cons_wf extd-nameset-nil assert_of_eq_int select_wf int_seg_properties length_wf sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma pi1_wf_top equal_wf squash_wf true_wf extd-nameset_subtype_int iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination because_Cache equalityTransitivity equalitySymmetry sqequalRule baseClosed hypothesisEquality applyEquality independent_isectElimination lambdaEquality setElimination rename dependent_functionElimination natural_numberEquality isect_memberEquality productElimination setEquality addLevel impliesFunctionality voidEquality independent_pairFormation unionElimination promote_hyp hypothesis_subsumption inlFormation dependent_set_memberEquality functionExtensionality applyLambdaEquality imageMemberEquality imageElimination dependent_pairFormation int_eqEquality intEquality computeAll independent_pairEquality universeEquality

Latex:
\mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
    \mforall{}bx:open\_box(cubical-interval();I;J;x;i).  \mforall{}h:name-morph(I;[]).
        ((\mneg{}(J  =  []))  {}\mRightarrow{}  (\mneg{}(filter(\mlambda{}f.(h  (fst(f))  =\msubz{}  fst(snd(f)));bx)  =  [])))



Date html generated: 2017_10_05-AM-10_26_36
Last ObjectModification: 2017_07_28-AM-11_22_57

Theory : cubical!sets


Home Index