Nuprl Lemma : get_face_unique

X:CubicalSet. ∀I:Cname List. ∀f:I-face(X;I). ∀J:nameset(I) List. ∀x:nameset(I). ∀i:ℕ2. ∀box:open_box(X;I;J;x;i).
  ((f ∈ box)  (get_face(dimension(f);direction(f);box) f ∈ I-face(X;I)))


Proof




Definitions occuring in Statement :  get_face: get_face(y;c;box) open_box: open_box(X;I;J;x;i) face-direction: direction(f) face-dimension: dimension(f) I-face: I-face(X;I) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname l_member: (x ∈ l) list: List int_seg: {i..j-} all: x:A. B[x] implies:  Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] open_box: open_box(X;I;J;x;i) prop: subtype_rel: A ⊆B uimplies: supposing a nameset: nameset(L) decidable: Dec(P) or: P ∨ Q and: P ∧ Q sq_stable: SqStable(P) cand: c∧ B l_member: (x ∈ l) exists: x:A. B[x] squash: T l_all: (∀x∈L.P[x]) int_seg: {i..j-} nat: lelt: i ≤ j < k guard: {T} coordinate_name: Cname int_upper: {i...} ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top I-face: I-face(X;I) iff: ⇐⇒ Q face-dimension: dimension(f) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) face-name: face-name(f) face-direction: direction(f) less_than: a < b so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  l_member_wf I-face_wf open_box_wf subtype_rel_list nameset_wf coordinate_name_wf int_seg_wf list_wf cubical-set_wf decidable__nameset face-dimension_wf get_face_wf face-direction_wf sq_stable__and equal_wf equal-wf-base sq_stable__equal nat_properties int_seg_properties sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-less_than length_wf pi1_wf_top cons_wf cons_member subtype_base_sq set_subtype_base le_wf int_subtype_base decidable__equal_int_seg non_neg_length length_wf_nat decidable__lt intformless_wf int_formula_prop_less_lemma decidable__equal_int intformeq_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma face-name_wf subtract_wf nameset_subtype_base lelt_wf get_face-wf pairwise-implies not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut inhabitedIsType hypothesis thin equalityIsType1 hypothesisEquality sqequalHypSubstitution equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination universeIsType introduction extract_by_obid isectElimination setElimination rename applyEquality independent_isectElimination lambdaEquality_alt sqequalRule natural_numberEquality unionElimination productElimination isect_memberEquality_alt because_Cache axiomEquality functionIsTypeImplies imageMemberEquality baseClosed imageElimination dependent_set_memberEquality_alt independent_pairFormation approximateComputation dependent_pairFormation_alt int_eqEquality voidElimination productIsType hyp_replacement applyLambdaEquality independent_pairEquality instantiate cumulativity intEquality closedConclusion equalityIsType4 productEquality

Latex:
\mforall{}X:CubicalSet.  \mforall{}I:Cname  List.  \mforall{}f:I-face(X;I).  \mforall{}J:nameset(I)  List.  \mforall{}x:nameset(I).  \mforall{}i:\mBbbN{}2.
\mforall{}box:open\_box(X;I;J;x;i).
    ((f  \mmember{}  box)  {}\mRightarrow{}  (get\_face(dimension(f);direction(f);box)  =  f))



Date html generated: 2019_11_05-PM-00_28_34
Last ObjectModification: 2018_11_08-PM-00_51_59

Theory : cubical!sets


Home Index