Nuprl Lemma : get_face_unique
∀X:CubicalSet. ∀I:Cname List. ∀f:I-face(X;I). ∀J:nameset(I) List. ∀x:nameset(I). ∀i:ℕ2. ∀box:open_box(X;I;J;x;i).
  ((f ∈ box) 
⇒ (get_face(dimension(f);direction(f);box) = f ∈ I-face(X;I)))
Proof
Definitions occuring in Statement : 
get_face: get_face(y;c;box)
, 
open_box: open_box(X;I;J;x;i)
, 
face-direction: direction(f)
, 
face-dimension: dimension(f)
, 
I-face: I-face(X;I)
, 
cubical-set: CubicalSet
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
l_member: (x ∈ l)
, 
list: T List
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
open_box: open_box(X;I;J;x;i)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nameset: nameset(L)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
sq_stable: SqStable(P)
, 
cand: A c∧ B
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
I-face: I-face(X;I)
, 
iff: P 
⇐⇒ Q
, 
face-dimension: dimension(f)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
face-name: face-name(f)
, 
face-direction: direction(f)
, 
less_than: a < b
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
l_member_wf, 
I-face_wf, 
open_box_wf, 
subtype_rel_list, 
nameset_wf, 
coordinate_name_wf, 
int_seg_wf, 
list_wf, 
cubical-set_wf, 
decidable__nameset, 
face-dimension_wf, 
get_face_wf, 
face-direction_wf, 
sq_stable__and, 
equal_wf, 
equal-wf-base, 
sq_stable__equal, 
nat_properties, 
int_seg_properties, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-less_than, 
length_wf, 
pi1_wf_top, 
cons_wf, 
cons_member, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
decidable__equal_int_seg, 
non_neg_length, 
length_wf_nat, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
decidable__equal_int, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
face-name_wf, 
subtract_wf, 
nameset_subtype_base, 
lelt_wf, 
get_face-wf, 
pairwise-implies, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
inhabitedIsType, 
hypothesis, 
thin, 
equalityIsType1, 
hypothesisEquality, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
applyEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
sqequalRule, 
natural_numberEquality, 
unionElimination, 
productElimination, 
isect_memberEquality_alt, 
because_Cache, 
axiomEquality, 
functionIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
productIsType, 
hyp_replacement, 
applyLambdaEquality, 
independent_pairEquality, 
instantiate, 
cumulativity, 
intEquality, 
closedConclusion, 
equalityIsType4, 
productEquality
Latex:
\mforall{}X:CubicalSet.  \mforall{}I:Cname  List.  \mforall{}f:I-face(X;I).  \mforall{}J:nameset(I)  List.  \mforall{}x:nameset(I).  \mforall{}i:\mBbbN{}2.
\mforall{}box:open\_box(X;I;J;x;i).
    ((f  \mmember{}  box)  {}\mRightarrow{}  (get\_face(dimension(f);direction(f);box)  =  f))
Date html generated:
2019_11_05-PM-00_28_34
Last ObjectModification:
2018_11_08-PM-00_51_59
Theory : cubical!sets
Home
Index