Nuprl Lemma : get_face-wf

[X:CubicalSet]. ∀[I,J:Cname List]. ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[box:open_box(X;I;J;x;i)].
  (get_face(x;i;box) ∈ {f:I-face(X;I)| (f ∈ box) ∧ (face-name(f) = <x, i> ∈ (nameset(I) × ℕ2))} )


Proof




Definitions occuring in Statement :  get_face: get_face(y;c;box) open_box: open_box(X;I;J;x;i) face-name: face-name(f) I-face: I-face(X;I) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname l_member: (x ∈ l) list: List int_seg: {i..j-} uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  pair: <a, b> product: x:A × B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T open_box: open_box(X;I;J;x;i) and: P ∧ Q cand: c∧ B get_face: get_face(y;c;box) prop: all: x:A. B[x] I-face: I-face(X;I) pi1: fst(t) nameset: nameset(L) coordinate_name: Cname int_upper: {i...} implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a pi2: snd(t) int_seg: {i..j-} bfalse: ff subtype_rel: A ⊆B face-name: face-name(f) iff: ⇐⇒ Q rev_implies:  Q guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top sq_stable: SqStable(P) squash: T sq_type: SQType(T) so_lambda: λ2x.t[x] so_apply: x[s] cons: [a b] l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) less_than: a < b
Lemmas referenced :  filter_type I-face_wf l_member_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int equal_wf list-subtype list_wf assert_wf hd_wf face-name_wf open_box_wf int_seg_wf nameset_wf coordinate_name_wf cubical-set_wf subtype_rel_list band_wf iff_transitivity iff_weakening_uiff assert_of_band int_seg_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf subtype_base_sq int_subtype_base set_wf list-cases product_subtype_list sqequal-nil nil_wf filter_is_nil_implies select_wf length_wf pi1_wf_top set_subtype_base nameset_subtype_base length_cons_ge_one top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalHypSubstitution setElimination thin rename productElimination introduction extract_by_obid isectElimination setEquality hypothesisEquality hypothesis lambdaEquality lambdaFormation sqequalRule unionElimination equalityElimination independent_isectElimination because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination productEquality independent_pairEquality natural_numberEquality applyEquality dependent_set_memberEquality independent_pairFormation intEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll imageMemberEquality baseClosed imageElimination instantiate cumulativity promote_hyp hypothesis_subsumption applyLambdaEquality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[I,J:Cname  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[box:open\_box(X;I;J;x;i)].
    (get\_face(x;i;box)  \mmember{}  \{f:I-face(X;I)|  (f  \mmember{}  box)  \mwedge{}  (face-name(f)  =  <x,  i>)\}  )



Date html generated: 2017_10_05-AM-10_21_03
Last ObjectModification: 2017_07_28-AM-11_21_11

Theory : cubical!sets


Home Index