Nuprl Lemma : iota'-comp
∀[I,J:Cname List]. ∀[f:name-morph(I;J)].  ((iota'(I) o (f)+) = (f o iota'(J)) ∈ name-morph(I;J+))
Proof
Definitions occuring in Statement : 
name-comp: (f o g), 
iota': iota'(I), 
name-morph-extend: (f)+, 
name-morph: name-morph(I;J), 
add-fresh-cname: I+, 
coordinate_name: Cname, 
list: T List, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
name-morph: name-morph(I;J), 
uimplies: b supposing a, 
name-morph-extend: (f)+, 
iota': iota'(I), 
name-comp: (f o g), 
iota: iota(x), 
uext: uext(g), 
compose: f o g, 
has-value: (a)↓, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nameset: nameset(L), 
coordinate_name: Cname, 
int_upper: {i...}, 
isname: isname(z), 
implies: P ⇒ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
true: True, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
eq-cname: eq-cname(x;y), 
not: ¬A, 
false: False, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
bnot: ¬bb, 
add-fresh-cname: I+
Lemmas referenced : 
name-morphs-equal, 
add-fresh-cname_wf, 
name-comp_wf, 
iota'_wf, 
name-morph-extend_wf, 
value-type-has-value, 
coordinate_name_wf, 
not_wf, 
l_member_wf, 
set-value-type, 
coordinate_name-value-type, 
fresh-cname_wf, 
nameset_wf, 
name-morph_wf, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
iff_imp_equal_bool, 
le_int_wf, 
btrue_wf, 
iff_functionality_wrt_iff, 
assert_wf, 
le_wf, 
true_wf, 
iff_weakening_uiff, 
assert_of_le_int, 
iff_weakening_equal, 
set_subtype_base, 
istype-int, 
int_subtype_base, 
eq-cname_wf, 
eqtt_to_assert, 
assert-eq-cname, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
equal_wf, 
isname_wf, 
extd-nameset_subtype, 
cons_wf, 
l_subset_right_cons_trivial
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
equalitySymmetry, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
sqequalRule, 
independent_isectElimination, 
callbyvalueReduce, 
setEquality, 
universeIsType, 
because_Cache, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
instantiate, 
cumulativity, 
natural_numberEquality, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
lambdaFormation_alt, 
dependent_functionElimination, 
intEquality, 
closedConclusion, 
voidElimination, 
equalityIsType4, 
equalityIsType3, 
equalityIsType1, 
unionElimination, 
equalityElimination, 
dependent_pairFormation_alt, 
promote_hyp
Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].    ((iota'(I)  o  (f)+)  =  (f  o  iota'(J)))
Date html generated:
2019_11_05-PM-00_24_53
Last ObjectModification:
2018_11_08-PM-00_15_40
Theory : cubical!sets
Home
Index