Nuprl Lemma : iota'-comp

[I,J:Cname List]. ∀[f:name-morph(I;J)].  ((iota'(I) (f)+) (f iota'(J)) ∈ name-morph(I;J+))


Proof




Definitions occuring in Statement :  name-comp: (f g) iota': iota'(I) name-morph-extend: (f)+ name-morph: name-morph(I;J) add-fresh-cname: I+ coordinate_name: Cname list: List uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B name-morph: name-morph(I;J) uimplies: supposing a name-morph-extend: (f)+ iota': iota'(I) name-comp: (f g) iota: iota(x) uext: uext(g) compose: g has-value: (a)↓ prop: so_lambda: λ2x.t[x] so_apply: x[s] nameset: nameset(L) coordinate_name: Cname int_upper: {i...} isname: isname(z) implies:  Q assert: b ifthenelse: if then else fi  btrue: tt guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q true: True sq_type: SQType(T) all: x:A. B[x] eq-cname: eq-cname(x;y) not: ¬A false: False bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb add-fresh-cname: I+
Lemmas referenced :  name-morphs-equal add-fresh-cname_wf name-comp_wf iota'_wf name-morph-extend_wf value-type-has-value coordinate_name_wf not_wf l_member_wf set-value-type coordinate_name-value-type fresh-cname_wf nameset_wf name-morph_wf subtype_base_sq bool_wf bool_subtype_base iff_imp_equal_bool le_int_wf btrue_wf iff_functionality_wrt_iff assert_wf le_wf true_wf iff_weakening_uiff assert_of_le_int iff_weakening_equal set_subtype_base istype-int int_subtype_base eq-cname_wf eqtt_to_assert assert-eq-cname eqff_to_assert bool_cases_sqequal assert-bnot equal_wf isname_wf extd-nameset_subtype cons_wf l_subset_right_cons_trivial
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut equalitySymmetry extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity sqequalRule independent_isectElimination callbyvalueReduce setEquality universeIsType because_Cache isect_memberEquality_alt axiomEquality isectIsTypeImplies instantiate cumulativity natural_numberEquality independent_functionElimination productElimination independent_pairFormation lambdaFormation_alt dependent_functionElimination intEquality closedConclusion voidElimination equalityIsType4 equalityIsType3 equalityIsType1 unionElimination equalityElimination dependent_pairFormation_alt promote_hyp

Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].    ((iota'(I)  o  (f)+)  =  (f  o  iota'(J)))



Date html generated: 2019_11_05-PM-00_24_53
Last ObjectModification: 2018_11_08-PM-00_15_40

Theory : cubical!sets


Home Index