Nuprl Lemma : name-morph-extend_wf

[I,J:Cname List]. ∀[f:name-morph(I;J)].  ((f)+ ∈ name-morph(I+;J+))


Proof




Definitions occuring in Statement :  name-morph-extend: (f)+ name-morph: name-morph(I;J) add-fresh-cname: I+ coordinate_name: Cname list: List uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T name-morph-extend: (f)+ add-fresh-cname: I+ all: x:A. B[x] implies:  Q uimplies: supposing a has-value: (a)↓ name-morph: name-morph(I;J) cname_deq: CnameDeq top: Top nameset: nameset(L) coordinate_name: Cname int_upper: {i...} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] subtype_rel: A ⊆B or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False iff: ⇐⇒ Q rev_implies:  Q prop: nequal: a ≠ b ∈  squash: T not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) isname: isname(z) true: True so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  fresh-cname_wf name-morph_wf list_wf coordinate_name_wf value-type-has-value coordinate_name-value-type extd-nameset_subtype cons_wf l_subset_right_cons_trivial nameset_wf intdeq_reduce_lemma istype-void eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot neg_assert_of_eq_int cons_member l_member_wf nameset_subtype_extd-nameset full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf iff_imp_equal_bool le_int_wf btrue_wf iff_functionality_wrt_iff assert_wf le_wf true_wf iff_weakening_uiff assert_of_le_int iff_weakening_equal istype-assert int_subtype_base extd-nameset_wf set_subtype_base isname_wf extd-nameset_subtype_base assert-isname nameset_subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType lambdaFormation_alt setElimination rename equalityIsType1 equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination sqequalRule axiomEquality universeIsType isect_memberEquality_alt isectIsTypeImplies independent_isectElimination because_Cache callbyvalueReduce dependent_set_memberEquality_alt lambdaEquality_alt voidElimination unionElimination equalityElimination productElimination dependent_pairFormation_alt equalityIsType3 applyEquality promote_hyp instantiate cumulativity inlFormation_alt applyLambdaEquality imageMemberEquality baseClosed imageElimination natural_numberEquality approximateComputation int_eqEquality independent_pairFormation intEquality equalityIsType4 closedConclusion equalityIsType2 functionIsType

Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].    ((f)+  \mmember{}  name-morph(I+;J+))



Date html generated: 2019_11_05-PM-00_24_24
Last ObjectModification: 2018_11_08-PM-00_03_22

Theory : cubical!sets


Home Index