Nuprl Lemma : name-morph-extend_wf
∀[I,J:Cname List]. ∀[f:name-morph(I;J)].  ((f)+ ∈ name-morph(I+;J+))
Proof
Definitions occuring in Statement : 
name-morph-extend: (f)+, 
name-morph: name-morph(I;J), 
add-fresh-cname: I+, 
coordinate_name: Cname, 
list: T List, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
name-morph-extend: (f)+, 
add-fresh-cname: I+, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uimplies: b supposing a, 
has-value: (a)↓, 
name-morph: name-morph(I;J), 
cname_deq: CnameDeq, 
top: Top, 
nameset: nameset(L), 
coordinate_name: Cname, 
int_upper: {i...}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
nequal: a ≠ b ∈ T , 
squash: ↓T, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
isname: isname(z), 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
fresh-cname_wf, 
name-morph_wf, 
list_wf, 
coordinate_name_wf, 
value-type-has-value, 
coordinate_name-value-type, 
extd-nameset_subtype, 
cons_wf, 
l_subset_right_cons_trivial, 
nameset_wf, 
intdeq_reduce_lemma, 
istype-void, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
assert-bnot, 
neg_assert_of_eq_int, 
cons_member, 
l_member_wf, 
nameset_subtype_extd-nameset, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
iff_imp_equal_bool, 
le_int_wf, 
btrue_wf, 
iff_functionality_wrt_iff, 
assert_wf, 
le_wf, 
true_wf, 
iff_weakening_uiff, 
assert_of_le_int, 
iff_weakening_equal, 
istype-assert, 
int_subtype_base, 
extd-nameset_wf, 
set_subtype_base, 
isname_wf, 
extd-nameset_subtype_base, 
assert-isname, 
nameset_subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
setElimination, 
rename, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalRule, 
axiomEquality, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
independent_isectElimination, 
because_Cache, 
callbyvalueReduce, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
voidElimination, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_pairFormation_alt, 
equalityIsType3, 
applyEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
inlFormation_alt, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
natural_numberEquality, 
approximateComputation, 
int_eqEquality, 
independent_pairFormation, 
intEquality, 
equalityIsType4, 
closedConclusion, 
equalityIsType2, 
functionIsType
Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].    ((f)+  \mmember{}  name-morph(I+;J+))
Date html generated:
2019_11_05-PM-00_24_24
Last ObjectModification:
2018_11_08-PM-00_03_22
Theory : cubical!sets
Home
Index