Nuprl Lemma : name-morph-extend_wf
∀[I,J:Cname List]. ∀[f:name-morph(I;J)].  ((f)+ ∈ name-morph(I+;J+))
Proof
Definitions occuring in Statement : 
name-morph-extend: (f)+
, 
name-morph: name-morph(I;J)
, 
add-fresh-cname: I+
, 
coordinate_name: Cname
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
name-morph-extend: (f)+
, 
add-fresh-cname: I+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
name-morph: name-morph(I;J)
, 
cname_deq: CnameDeq
, 
top: Top
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
nequal: a ≠ b ∈ T 
, 
squash: ↓T
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
isname: isname(z)
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
fresh-cname_wf, 
name-morph_wf, 
list_wf, 
coordinate_name_wf, 
value-type-has-value, 
coordinate_name-value-type, 
extd-nameset_subtype, 
cons_wf, 
l_subset_right_cons_trivial, 
nameset_wf, 
intdeq_reduce_lemma, 
istype-void, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
assert-bnot, 
neg_assert_of_eq_int, 
cons_member, 
l_member_wf, 
nameset_subtype_extd-nameset, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
iff_imp_equal_bool, 
le_int_wf, 
btrue_wf, 
iff_functionality_wrt_iff, 
assert_wf, 
le_wf, 
true_wf, 
iff_weakening_uiff, 
assert_of_le_int, 
iff_weakening_equal, 
istype-assert, 
int_subtype_base, 
extd-nameset_wf, 
set_subtype_base, 
isname_wf, 
extd-nameset_subtype_base, 
assert-isname, 
nameset_subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
setElimination, 
rename, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalRule, 
axiomEquality, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
independent_isectElimination, 
because_Cache, 
callbyvalueReduce, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
voidElimination, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_pairFormation_alt, 
equalityIsType3, 
applyEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
inlFormation_alt, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
natural_numberEquality, 
approximateComputation, 
int_eqEquality, 
independent_pairFormation, 
intEquality, 
equalityIsType4, 
closedConclusion, 
equalityIsType2, 
functionIsType
Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].    ((f)+  \mmember{}  name-morph(I+;J+))
Date html generated:
2019_11_05-PM-00_24_24
Last ObjectModification:
2018_11_08-PM-00_03_22
Theory : cubical!sets
Home
Index