Nuprl Lemma : assert-ctt-opr-is

[f:CttOp]. ∀[s:Atom].  uiff(↑ctt-opr-is(f;s);f = <"opid", s> ∈ CttOp)


Proof




Definitions occuring in Statement :  ctt-opr-is: ctt-opr-is(f;s) ctt-op: CttOp assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] pair: <a, b> token: "$token" atom: Atom equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q subtype_rel: A ⊆B ctt-op: CttOp ctt-opr-is: ctt-opr-is(f;s) so_lambda: λ2x.t[x] so_apply: x[s] not: ¬A false: False all: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q bfalse: ff eq_atom: =a y band: p ∧b q l_member: (x ∈ l) exists: x:A. B[x] nat: le: A ≤ B less_than': less_than'(a;b) select: L[n] cons: [a b] cand: c∧ B less_than: a < b squash: T true: True prop: bool: 𝔹 unit: Unit it: bnot: ¬bb assert: b rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  istype-assert ctt-opr-is_wf assert_witness atom_subtype_base istype-atom ctt-op_wf eq_atom_wf assert_wf bnot_wf not_wf equal-wf-base set_subtype_base l_member_wf cons_wf nil_wf istype-void bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_atom eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot istype-le length_of_cons_lemma length_of_nil_lemma istype-less_than length_wf list_subtype_base le_wf istype-int int_subtype_base ctt-tokens_wf bool_cases_sqequal assert-bnot neg_assert_of_eq_atom nat_wf iff_imp_equal_bool bfalse_wf iff_functionality_wrt_iff false_wf iff_weakening_equal assert_functionality_wrt_uiff squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache independent_functionElimination equalityIstype inhabitedIsType sqequalRule baseApply closedConclusion baseClosed applyEquality sqequalBase equalitySymmetry productElimination independent_pairEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies universeIsType setElimination rename tokenEquality equalityTransitivity atomEquality lambdaEquality_alt independent_isectElimination functionIsType dependent_functionElimination unionElimination instantiate cumulativity lambdaFormation_alt promote_hyp dependent_pairEquality_alt dependent_pairFormation_alt dependent_set_memberEquality_alt natural_numberEquality voidElimination Error :memTop,  imageMemberEquality productIsType intEquality hyp_replacement applyLambdaEquality equalityElimination setEquality universeEquality productEquality imageElimination

Latex:
\mforall{}[f:CttOp].  \mforall{}[s:Atom].    uiff(\muparrow{}ctt-opr-is(f;s);f  =  <"opid",  s>)



Date html generated: 2020_05_20-PM-08_21_33
Last ObjectModification: 2020_03_02-PM-04_11_20

Theory : cubical!type!theory


Home Index