Nuprl Lemma : comp-nc-1-subset-I_cube

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[phi:𝔽(I)].  ∀J:fset(ℕ). ∀[f:I,phi(J)]. ((i1) ⋅ f ∈ I+i,s(phi)(J))


Proof




Definitions occuring in Statement :  cubical-subset: I,psi face-presheaf: 𝔽 cube-set-restriction: f(s) I_cube: A(I) nc-1: (i1) nc-s: s add-name: I+i nh-comp: g ⋅ f fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] all: x:A. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T and: P ∧ Q nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: subtype_rel: A ⊆B I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  cubical-subset-I_cube-member member-cubical-subset-I_cube add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le cube-set-restriction_wf face-presheaf_wf nc-s_wf f-subset-add-name nh-comp_wf nc-1_wf name-morph-satisfies-comp subtype_rel_self lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf name-morph-satisfies_wf names-hom_wf I_cube_wf cubical-subset_wf small_cubical_set_subtype istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf squash_wf true_wf istype-universe nh-comp-assoc iff_weakening_equal nh-id-right s-comp-nc-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination dependent_set_memberEquality_alt setElimination rename hypothesis dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination applyEquality because_Cache instantiate productEquality cumulativity isectEquality hyp_replacement equalitySymmetry imageElimination equalityTransitivity imageMemberEquality baseClosed inhabitedIsType setIsType functionIsType intEquality universeEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[phi:\mBbbF{}(I)].
    \mforall{}J:fset(\mBbbN{}).  \mforall{}[f:I,phi(J)].  ((i1)  \mcdot{}  f  \mmember{}  I+i,s(phi)(J))



Date html generated: 2020_05_20-PM-03_44_31
Last ObjectModification: 2020_01_06-PM-04_07_42

Theory : cubical!type!theory


Home Index