Nuprl Lemma : equiv-path2-0
∀[G:j⊢]. ∀[A,B:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(A;B)}]. ∀[cA:G +⊢ Compositon(A)]. ∀[cB:G +⊢ Compositon(B)].
  ((equiv-path2(G;A;B;cA;cB;f))[0(𝕀)] = cA ∈ G +⊢ Compositon(A))
Proof
Definitions occuring in Statement : 
equiv-path2: equiv-path2(G;A;B;cA;cB;f)
, 
csm-comp-structure: (cA)tau
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
cubical-equiv: Equiv(T;A)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
equiv-path2: equiv-path2(G;A;B;cA;cB;f)
, 
subtype_rel: A ⊆r B
, 
csm-comp-structure: (cA)tau
, 
csm-comp: G o F
, 
compose: f o g
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap-term: (t)s
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
pi2: snd(t)
, 
prop: ℙ
, 
pi1: fst(t)
, 
cubical-type: {X ⊢ _}
, 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cubical-type-at: A(a)
, 
face-type: 𝔽
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
same-cubical-type: Gamma ⊢ A = B
Lemmas referenced : 
cc-snd_wf, 
interval-type_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
cc-fst_wf_interval, 
case-type_wf, 
face-zero_wf, 
face-one_wf, 
thin-context-subset, 
same-cubical-type-zero-and-one, 
face-0_wf, 
csm-glue-comp-agrees, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf-interval-0, 
csm-comp-structure_wf2, 
face-or_wf, 
cubical-equiv-by-cases_wf, 
composition-structure_wf, 
istype-cubical-term, 
cubical-equiv_wf, 
cubical-type_wf, 
cubical_set_wf, 
subset-cubical-type, 
context-subset_wf, 
context-subset-is-subset, 
case-type-comp-disjoint, 
csm-comp-structure_wf, 
csm-context-subset-subtype2, 
face-term-implies_wf, 
face-zero-and-one, 
iff_weakening_equal, 
face-term-implies-same, 
csm-face-or, 
csm-face-zero, 
csm-face-one, 
face-zero-interval-0, 
interval-0_wf, 
face-term-implies-or1, 
squash_wf, 
true_wf, 
face-type_wf, 
subtype_rel_self, 
csm-case-type-comp, 
case-type-comp-true-false, 
csm-id_wf, 
composition-structure-subset, 
face-one-interval-0, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
cubical-term-at_wf, 
lattice-1_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
istype-universe, 
subtype_rel_wf, 
csm-comp-structure-id, 
csm-ap-id-type, 
csm-case-type, 
case-type-same1, 
face-1_wf, 
context-1-subset, 
sub_cubical_set_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
lambdaFormation_alt, 
instantiate, 
because_Cache, 
independent_isectElimination, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
lambdaEquality_alt, 
hyp_replacement, 
universeIsType, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
Error :memTop, 
universeEquality, 
setElimination, 
rename, 
productEquality, 
cumulativity, 
isectEquality
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(A;B)\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].
\mforall{}[cB:G  +\mvdash{}  Compositon(B)].
    ((equiv-path2(G;A;B;cA;cB;f))[0(\mBbbI{})]  =  cA)
Date html generated:
2020_05_20-PM-07_28_40
Last ObjectModification:
2020_04_28-PM-04_51_26
Theory : cubical!type!theory
Home
Index