Nuprl Lemma : formal-cube-singleton-iso-interval-presheaf

x:ℕcat-isomorphic(FUN(op-cat(CubeCat);TypeCat');formal-cube({x});𝕀)


Proof




Definitions occuring in Statement :  formal-cube: formal-cube(I) interval-presheaf: 𝕀 cube-cat: CubeCat fset-singleton: {x} nat: all: x:A. B[x] type-cat: TypeCat op-cat: op-cat(C) functor-cat: FUN(C1;C2) cat-isomorphic: cat-isomorphic(C;x;y)
Definitions unfolded in proof :  all: x:A. B[x] functor-cat: FUN(C1;C2) cat-isomorphic: cat-isomorphic(C;x;y) member: t ∈ T cat-isomorphism: cat-isomorphism(C;x;y;f) exists: x:A. B[x] uall: [x:A]. B[x] cubical_set: CubicalSet ps_context: __⊢ and: P ∧ Q cat-inverse: fg=1 type-cat: TypeCat op-cat: op-cat(C) cube-cat: CubeCat spreadn: spread4 compose: g subtype_rel: A ⊆B small_cubical_set: SmallCubicalSet cat-functor: Functor(C1;C2) small_ps_context: small_ps_context{i:l}(C) so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a fset: fset(T) quotient: x,y:A//B[x; y] cat-ob: cat-ob(C) pi1: fst(t) cat-arrow: cat-arrow(C) pi2: snd(t) names-hom: I ⟶ J implies:  Q nh-id: 1 nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) cat-id: cat-id(C) cat-comp: cat-comp(C) trans-comp: t1 t2 mk-nat-trans: |→ T[x] formal-cube: formal-cube(I) nat: uiff: uiff(P;Q) names: names(I) identity-trans: identity-trans(C;D;F) DeMorgan-algebra: DeMorganAlgebra guard: {T} sq_type: SQType(T)
Lemmas referenced :  istype-nat cat_arrow_triple_lemma formal-cube-singleton1 formal-cube-singleton2 formal-cube_wf fset-singleton_wf nat_wf cat_comp_tuple_lemma cat_id_tuple_lemma interval-presheaf_wf cat_ob_pair_lemma subtype_rel_sets cat-ob_wf op-cat_wf cube-cat_wf type-cat_wf cat-arrow_wf fset_wf names-hom_wf equal_wf cat-id_wf cat-comp_wf equal-wf-T-base nh-id_wf nh-comp_wf istype-universe subtype_rel_set subtype_rel_product subtype_rel_dep_function subtype_rel_self subtype_rel_universe1 identity-trans_wf ob_pair_lemma member-fset-singleton int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self fset-member_wf names_wf nat-trans-equal lattice-point_wf dM_wf DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf subtype_base_sq set_subtype_base int_subtype_base cat-inverse_wf functor-cat_wf formal-cube_wf1 small_cubical_set_subtype nat-trans_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid hypothesis sqequalRule sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  dependent_pairFormation_alt hypothesisEquality isectElimination independent_pairFormation applyEquality instantiate cumulativity productEquality functionEquality universeEquality lambdaEquality_alt spreadEquality productIsType functionIsType universeIsType because_Cache inhabitedIsType baseClosed independent_isectElimination productElimination equalityIstype equalitySymmetry equalityTransitivity intEquality natural_numberEquality dependent_set_memberEquality_alt functionExtensionality rename isectEquality independent_functionElimination setElimination

Latex:
\mforall{}x:\mBbbN{}.  cat-isomorphic(FUN(op-cat(CubeCat);TypeCat');formal-cube(\{x\});\mBbbI{})



Date html generated: 2020_05_20-PM-01_40_20
Last ObjectModification: 2020_04_20-PM-00_38_37

Theory : cubical!type!theory


Home Index