Nuprl Lemma : formal-cube-singleton-iso-interval-presheaf
∀x:ℕ. cat-isomorphic(FUN(op-cat(CubeCat);TypeCat');formal-cube({x});𝕀)
Proof
Definitions occuring in Statement : 
formal-cube: formal-cube(I)
, 
interval-presheaf: 𝕀
, 
cube-cat: CubeCat
, 
fset-singleton: {x}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
type-cat: TypeCat
, 
op-cat: op-cat(C)
, 
functor-cat: FUN(C1;C2)
, 
cat-isomorphic: cat-isomorphic(C;x;y)
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
functor-cat: FUN(C1;C2)
, 
cat-isomorphic: cat-isomorphic(C;x;y)
, 
member: t ∈ T
, 
cat-isomorphism: cat-isomorphism(C;x;y;f)
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
cubical_set: CubicalSet
, 
ps_context: __⊢
, 
and: P ∧ Q
, 
cat-inverse: fg=1
, 
type-cat: TypeCat
, 
op-cat: op-cat(C)
, 
cube-cat: CubeCat
, 
spreadn: spread4, 
compose: f o g
, 
subtype_rel: A ⊆r B
, 
small_cubical_set: SmallCubicalSet
, 
cat-functor: Functor(C1;C2)
, 
small_ps_context: small_ps_context{i:l}(C)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
names-hom: I ⟶ J
, 
implies: P 
⇒ Q
, 
nh-id: 1
, 
nh-comp: g ⋅ f
, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g)
, 
cat-id: cat-id(C)
, 
cat-comp: cat-comp(C)
, 
trans-comp: t1 o t2
, 
mk-nat-trans: x |→ T[x]
, 
formal-cube: formal-cube(I)
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
names: names(I)
, 
identity-trans: identity-trans(C;D;F)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
guard: {T}
, 
sq_type: SQType(T)
Lemmas referenced : 
istype-nat, 
cat_arrow_triple_lemma, 
formal-cube-singleton1, 
formal-cube-singleton2, 
formal-cube_wf, 
fset-singleton_wf, 
nat_wf, 
cat_comp_tuple_lemma, 
cat_id_tuple_lemma, 
interval-presheaf_wf, 
cat_ob_pair_lemma, 
subtype_rel_sets, 
cat-ob_wf, 
op-cat_wf, 
cube-cat_wf, 
type-cat_wf, 
cat-arrow_wf, 
fset_wf, 
names-hom_wf, 
equal_wf, 
cat-id_wf, 
cat-comp_wf, 
equal-wf-T-base, 
nh-id_wf, 
nh-comp_wf, 
istype-universe, 
subtype_rel_set, 
subtype_rel_product, 
subtype_rel_dep_function, 
subtype_rel_self, 
subtype_rel_universe1, 
identity-trans_wf, 
ob_pair_lemma, 
member-fset-singleton, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
fset-member_wf, 
names_wf, 
nat-trans-equal, 
lattice-point_wf, 
dM_wf, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
cat-inverse_wf, 
functor-cat_wf, 
formal-cube_wf1, 
small_cubical_set_subtype, 
nat-trans_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
Error :memTop, 
dependent_pairFormation_alt, 
hypothesisEquality, 
isectElimination, 
independent_pairFormation, 
applyEquality, 
instantiate, 
cumulativity, 
productEquality, 
functionEquality, 
universeEquality, 
lambdaEquality_alt, 
spreadEquality, 
productIsType, 
functionIsType, 
universeIsType, 
because_Cache, 
inhabitedIsType, 
baseClosed, 
independent_isectElimination, 
productElimination, 
equalityIstype, 
equalitySymmetry, 
equalityTransitivity, 
intEquality, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
functionExtensionality, 
rename, 
isectEquality, 
independent_functionElimination, 
setElimination
Latex:
\mforall{}x:\mBbbN{}.  cat-isomorphic(FUN(op-cat(CubeCat);TypeCat');formal-cube(\{x\});\mBbbI{})
Date html generated:
2020_05_20-PM-01_40_20
Last ObjectModification:
2020_04_20-PM-00_38_37
Theory : cubical!type!theory
Home
Index