Nuprl Lemma : nc-se'-p

[J:fset(ℕ)]. ∀[k,z:ℕ]. ∀[n:{n:ℕ| ¬n ∈ J} ].  (s,z=n ⋅ (n/<k>e(z;k) ∈ J+k ⟶ J+z)


Proof




Definitions occuring in Statement :  nc-e': g,i=j nc-e: e(i;j) nc-p: (i/z) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J dM_inc: <x> fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top names-hom: I ⟶ J compose: g nc-e: e(i;j) nc-s: s nc-e': g,i=j names: names(I) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  squash: T subtype_rel: A ⊆B prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False so_lambda: λ2x.t[x] so_apply: x[s] nc-p: (i/z) nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A sq_stable: SqStable(P) decidable: Dec(P)
Lemmas referenced :  nh-comp-sq eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int equal_wf lattice-point_wf dM_wf add-name_wf dM-lift-inc nc-p_wf dM_inc_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf iff_weakening_equal eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int not-added-name strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self names_wf set_wf not_wf fset_wf nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf names-subtype f-subset-add-name1 f-subset-add-name squash_wf true_wf deq_wf sq_stable__fset-member decidable__le intformand_wf intformle_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis functionExtensionality setElimination rename hypothesisEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination applyEquality lambdaEquality imageElimination because_Cache dependent_functionElimination dependent_set_memberEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination dependent_pairFormation promote_hyp instantiate cumulativity intEquality universeEquality axiomEquality int_eqEquality computeAll applyLambdaEquality hyp_replacement independent_pairFormation

Latex:
\mforall{}[J:fset(\mBbbN{})].  \mforall{}[k,z:\mBbbN{}].  \mforall{}[n:\{n:\mBbbN{}|  \mneg{}n  \mmember{}  J\}  ].    (s,z=n  \mcdot{}  (n/<k>)  =  e(z;k))



Date html generated: 2017_10_05-AM-01_06_54
Last ObjectModification: 2017_07_28-AM-09_28_06

Theory : cubical!type!theory


Home Index