Nuprl Lemma : r-comp-nc-1

[I:fset(ℕ)]. ∀[i:ℕ].  r_i ⋅ (i1) (i0) ∈ I ⟶ I+i supposing ¬i ∈ I


Proof




Definitions occuring in Statement :  nc-1: (i1) nc-0: (i0) nc-r: r_i add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nc-0: (i0) nc-r: r_i nc-1: (i1) nh-comp: g ⋅ f names-hom: I ⟶ J dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) top: Top names: names(I) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] squash: T DeMorgan-algebra: DeMorganAlgebra true: True iff: ⇐⇒ Q rev_implies:  Q nequal: a ≠ b ∈  ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  dM1-sq-singleton-empty dM0-sq-empty eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int names_wf add-name_wf not_wf fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf squash_wf true_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift-opp trivial-member-add-name1 dM0_wf subtype_rel_self iff_weakening_equal dM1_wf dM_inc_wf not-added-name neg-dM1 nat_properties full-omega-unsat intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf dM-lift-inc intformand_wf int_formula_prop_and_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis setElimination rename hypothesisEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache applyEquality intEquality lambdaEquality natural_numberEquality axiomEquality imageElimination universeEquality productEquality dependent_set_memberEquality imageMemberEquality baseClosed approximateComputation int_eqEquality independent_pairFormation

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    r\_i  \mcdot{}  (i1)  =  (i0)  supposing  \mneg{}i  \mmember{}  I



Date html generated: 2018_05_23-AM-08_29_27
Last ObjectModification: 2018_05_20-PM-05_40_10

Theory : cubical!type!theory


Home Index