Nuprl Lemma : eu-add-length-between-iff

e:EuclideanPlane. ∀[a,b,c:Point].  uiff(a_b_c;|ac| |ab| |bc| ∈ {p:Point| O_X_p} )


Proof




Definitions occuring in Statement :  eu-add-length: q eu-length: |s| eu-mk-seg: ab euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T prop: euclidean-plane: EuclideanPlane stable: Stable{P} not: ¬A implies:  Q false: False exists: x:A. B[x] squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B
Lemmas referenced :  eu-between-eq_wf equal_wf eu-point_wf eu-O_wf eu-X_wf eu-length_wf eu-mk-seg_wf eu-add-length_wf euclidean-plane_wf eu-add-length-between stable__eu-between-eq eu-between-eq-trivial-left not_wf eu-le-add1 eu-le_wf eu-le-null-segment eu-congruence-identity eu-congruent-iff-length eu-extend-exists eu-congruent_wf eu-congruence-identity-sym false_wf squash_wf true_wf euclidean-structure_wf iff_weakening_equal eu-between-eq-trivial-right set_wf eu-add-length-zero2 eu-add-length-assoc eu-add-length-cancel-left eu-between-eq-same-side2 eu-between-eq-symmetry eu-congruent-between-implies-equal and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation independent_pairFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality axiomEquality setEquality because_Cache dependent_functionElimination independent_isectElimination independent_functionElimination hyp_replacement equalitySymmetry Error :applyLambdaEquality,  sqequalRule voidElimination dependent_set_memberEquality productElimination equalityTransitivity equalityEquality universeEquality applyEquality lambdaEquality imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c:Point].    uiff(a\_b\_c;|ac|  =  |ab|  +  |bc|)



Date html generated: 2016_10_26-AM-07_44_23
Last ObjectModification: 2016_07_12-AM-08_12_02

Theory : euclidean!geometry


Home Index