Nuprl Lemma : hyptrans_0

[rv:InnerProductSpace]. ∀[e,x:Point].  hyptrans(rv;e;r0;x) ≡ x


Proof




Definitions occuring in Statement :  hyptrans: hyptrans(rv;e;t;x) inner-product-space: InnerProductSpace int-to-real: r(n) ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hyptrans: hyptrans(rv;e;t;x) ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  ss-sep_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf hyptrans_wf int-to-real_wf ss-point_wf rv-add_wf rv-mul_wf radd_wf rmul_wf rsub_wf cosh_wf rsqrt_wf sinh_wf rv-ip_wf radd-non-neg rleq-int false_wf rv-ip-nonneg rleq_wf itermSubtract_wf itermAdd_wf itermMultiply_wf itermVar_wf itermConstant_wf req-iff-rsub-is-0 ss-eq_functionality rv-add_functionality ss-eq_weakening rv-mul_functionality radd_functionality rmul_functionality req_weakening sinh0 rsub_functionality cosh0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma rv-0_wf rv-0-add rv-mul0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality because_Cache extract_by_obid isectElimination applyEquality hypothesis instantiate independent_isectElimination natural_numberEquality isect_memberEquality voidElimination independent_functionElimination productElimination independent_pairFormation lambdaFormation dependent_set_memberEquality approximateComputation int_eqEquality intEquality voidEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e,x:Point].    hyptrans(rv;e;r0;x)  \mequiv{}  x



Date html generated: 2017_10_05-AM-00_28_12
Last ObjectModification: 2017_06_21-PM-02_40_01

Theory : inner!product!spaces


Home Index