Nuprl Lemma : proj-incidence_symmetry

[n:ℕ]. ∀[p,v:ℙ^n].  uiff(v on p;p on v)


Proof




Definitions occuring in Statement :  proj-incidence: on p real-proj: ^n nat: uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: real-proj: ^n subtype_rel: A ⊆B uiff: uiff(P;Q) proj-incidence: on p dot-product: x⋅y so_lambda: λ2x.t[x] real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b so_apply: x[s] pointwise-req: x[k] y[k] for k ∈ [n,m] proj-rev: proj-rev(n;p) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b req_int_terms: t1 ≡ t2
Lemmas referenced :  dot-product_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf proj-rev_wf real-proj_wf int-to-real_wf proj-incidence_wf nat_wf req_witness rsum_functionality subtract_wf rmul_wf add-subtract-cancel decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf int_seg_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int rmul_comm eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf rminus_wf itermSubtract_wf itermMultiply_wf itermMinus_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_minus_lemma real_term_value_const_lemma req_inversion req_transitivity
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality addEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation applyEquality because_Cache isect_memberFormation productElimination independent_pairEquality equalityTransitivity equalitySymmetry lambdaFormation equalityElimination promote_hyp instantiate cumulativity

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,v:\mBbbP{}\^{}n].    uiff(v  on  p;p  on  v)



Date html generated: 2017_10_05-AM-00_19_42
Last ObjectModification: 2017_06_17-AM-10_08_48

Theory : inner!product!spaces


Home Index