Nuprl Lemma : int-int-retraction-reals
∃r:(ℤ ⟶ ℤ) ⟶ ℝ. ∀x:ℝ. (x = (r (λi.if i <z 1 then x 1 else x i fi )))
Proof
Definitions occuring in Statement : 
req: x = y
, 
real: ℝ
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
int_upper: {i...}
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
decidable: Dec(P)
, 
top: Top
Lemmas referenced : 
real-regular, 
less_than_wf, 
real_wf, 
int-int-retraction-reals-1, 
false_wf, 
le_wf, 
all_wf, 
squash_wf, 
true_wf, 
req_wf, 
iff_weakening_equal, 
req-iff-bdd-diff, 
accelerate_wf, 
regular-int-seq_wf, 
nat_plus_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
decidable__lt, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
trivial-bdd-diff, 
bdd-diff_functionality, 
bdd-diff_weakening, 
accelerate-bdd-diff
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
hypothesis, 
dependent_functionElimination, 
productElimination, 
dependent_pairFormation, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
setElimination, 
rename, 
functionExtensionality, 
intEquality, 
unionElimination, 
equalityElimination, 
promote_hyp, 
instantiate, 
voidElimination, 
isect_memberEquality, 
voidEquality
Latex:
\mexists{}r:(\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbR{}.  \mforall{}x:\mBbbR{}.  (x  =  (r  (\mlambda{}i.if  i  <z  1  then  x  1  else  x  i  fi  )))
Date html generated:
2017_10_03-AM-10_07_18
Last ObjectModification:
2017_07_28-AM-08_53_12
Theory : reals
Home
Index