Nuprl Lemma : quadratic-1-2-equal-implies

[a,b,c:ℝ].
  ((b b) (r(4) c)) supposing 
     ((quadratic1(a;b;c) quadratic2(a;b;c)) and 
     (r0 ≤ ((b b) r(4) c)) and 
     a ≠ r0)


Proof




Definitions occuring in Statement :  quadratic2: quadratic2(a;b;c) quadratic1: quadratic1(a;b;c) rneq: x ≠ y rleq: x ≤ y rsub: y req: y rmul: b int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) top: Top not: ¬A false: False req_int_terms: t1 ≡ t2 uiff: uiff(P;Q) subtype_rel: A ⊆B quadratic1: quadratic1(a;b;c) quadratic2: quadratic2(a;b;c) guard: {T} prop: true: True less_than': less_than'(a;b) squash: T less_than: a < b rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x] or: P ∨ Q rneq: x ≠ y uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rsqrt-is-zero radd-rminus real_term_value_minus_lemma real_term_value_add_lemma itermMinus_wf itermAdd_wf radd-rminus-assoc radd-preserves-req req_functionality rmul_preserves_req fractions-req real_term_value_var_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_sub_lemma real_polynomial_null req-iff-rsub-is-0 itermVar_wf itermMultiply_wf itermConstant_wf itermSubtract_wf quadratic2_wf quadratic1_wf req_witness req-implies-req equal_wf rneq_wf real_wf rleq_wf rsqrt_wf rminus_wf radd_wf rdiv_wf req_wf rsub_wf rless_wf rmul-zero-both rmul_comm rmul_wf rless_functionality rless-int int-to-real_wf rmul_preserves_rless
Rules used in proof :  voidEquality voidElimination intEquality int_eqEquality approximateComputation isect_memberEquality equalitySymmetry equalityTransitivity productEquality setEquality rename setElimination lambdaEquality applyEquality dependent_set_memberEquality lambdaFormation inrFormation because_Cache independent_isectElimination baseClosed imageMemberEquality independent_pairFormation sqequalRule productElimination independent_functionElimination hypothesis natural_numberEquality isectElimination hypothesisEquality dependent_functionElimination extract_by_obid inlFormation thin unionElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a,b,c:\mBbbR{}].
    ((b  *  b)  =  (r(4)  *  a  *  c))  supposing 
          ((quadratic1(a;b;c)  =  quadratic2(a;b;c))  and 
          (r0  \mleq{}  ((b  *  b)  -  r(4)  *  a  *  c))  and 
          a  \mneq{}  r0)



Date html generated: 2018_05_22-PM-02_24_23
Last ObjectModification: 2018_05_21-AM-00_47_04

Theory : reals


Home Index