Nuprl Lemma : rat2real-qadd

[a,b:ℚ].  (rat2real(a b) (rat2real(a) rat2real(b)))


Proof




Definitions occuring in Statement :  rat2real: rat2real(q) req: y radd: b uall: [x:A]. B[x] qadd: s rationals:
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) decidable: Dec(P) rev_implies:  Q or: P ∨ Q guard: {T} rneq: x ≠ y top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) nequal: a ≠ b ∈  int_nzero: -o rat2real: rat2real(q) bfalse: ff ifthenelse: if then else fi  has-valueall: has-valueall(a) has-value: (a)↓ callbyvalueall: callbyvalueall so_apply: x[s] so_lambda: λ2x.t[x] qadd: s mk-rational: mk-rational(a;b) uimplies: supposing a prop: and: P ∧ Q iff: ⇐⇒ Q subtype_rel: A ⊆B implies:  Q not: ¬A cand: c∧ B nat_plus: + exists: x:A. B[x] all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  radd-int-fractions req_weakening radd_functionality int-rdiv-req rless_wf istype-less_than int_formula_prop_not_lemma intformnot_wf decidable__lt mul_bounds_1b rless-int rdiv_wf int-to-real_wf nequal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat mul_nzero int-rdiv_wf req_functionality mk-rational-qdiv evalall-reduce int-valueall-type product-valueall-type valueall-type-has-valueall req_witness radd_wf qdiv_wf qadd_wf rat2real_wf req_wf istype-assert assert-qeq int_subtype_base rationals_wf equal-wf-base int-subtype-rationals qeq_wf2 assert_wf iff_weakening_uiff nat_plus_properties q-elim
Rules used in proof :  unionElimination inrFormation_alt addEquality sqequalBase equalityIstype independent_pairFormation voidElimination int_eqEquality dependent_pairFormation_alt approximateComputation multiplyEquality dependent_set_memberEquality_alt callbyvalueReduce independent_pairEquality lambdaEquality_alt intEquality productEquality universeIsType isectIsTypeImplies isect_memberEquality_alt inhabitedIsType independent_isectElimination applyLambdaEquality equalitySymmetry hyp_replacement baseClosed because_Cache natural_numberEquality sqequalRule applyEquality independent_functionElimination lambdaFormation_alt rename setElimination hypothesis isectElimination productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a,b:\mBbbQ{}].    (rat2real(a  +  b)  =  (rat2real(a)  +  rat2real(b)))



Date html generated: 2019_10_31-AM-05_57_04
Last ObjectModification: 2019_10_30-PM-02_52_55

Theory : reals


Home Index