Nuprl Lemma : rat2real-qadd
∀[a,b:ℚ].  (rat2real(a + b) = (rat2real(a) + rat2real(b)))
Proof
Definitions occuring in Statement : 
rat2real: rat2real(q)
, 
req: x = y
, 
radd: a + b
, 
uall: ∀[x:A]. B[x]
, 
qadd: r + s
, 
rationals: ℚ
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
decidable: Dec(P)
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
rat2real: rat2real(q)
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
has-valueall: has-valueall(a)
, 
has-value: (a)↓
, 
callbyvalueall: callbyvalueall, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
qadd: r + s
, 
mk-rational: mk-rational(a;b)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
cand: A c∧ B
, 
nat_plus: ℕ+
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
radd-int-fractions, 
req_weakening, 
radd_functionality, 
int-rdiv-req, 
rless_wf, 
istype-less_than, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__lt, 
mul_bounds_1b, 
rless-int, 
rdiv_wf, 
int-to-real_wf, 
nequal_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
mul_nzero, 
int-rdiv_wf, 
req_functionality, 
mk-rational-qdiv, 
evalall-reduce, 
int-valueall-type, 
product-valueall-type, 
valueall-type-has-valueall, 
req_witness, 
radd_wf, 
qdiv_wf, 
qadd_wf, 
rat2real_wf, 
req_wf, 
istype-assert, 
assert-qeq, 
int_subtype_base, 
rationals_wf, 
equal-wf-base, 
int-subtype-rationals, 
qeq_wf2, 
assert_wf, 
iff_weakening_uiff, 
nat_plus_properties, 
q-elim
Rules used in proof : 
unionElimination, 
inrFormation_alt, 
addEquality, 
sqequalBase, 
equalityIstype, 
independent_pairFormation, 
voidElimination, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
multiplyEquality, 
dependent_set_memberEquality_alt, 
callbyvalueReduce, 
independent_pairEquality, 
lambdaEquality_alt, 
intEquality, 
productEquality, 
universeIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
inhabitedIsType, 
independent_isectElimination, 
applyLambdaEquality, 
equalitySymmetry, 
hyp_replacement, 
baseClosed, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
applyEquality, 
independent_functionElimination, 
lambdaFormation_alt, 
rename, 
setElimination, 
hypothesis, 
isectElimination, 
productElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a,b:\mBbbQ{}].    (rat2real(a  +  b)  =  (rat2real(a)  +  rat2real(b)))
Date html generated:
2019_10_31-AM-05_57_04
Last ObjectModification:
2019_10_30-PM-02_52_55
Theory : reals
Home
Index