Nuprl Lemma : rprod-of-positive

n,m:ℤ. ∀x:{n..m 1-} ⟶ ℝ.  r0 < rprod(n;m;k.x[k]) supposing ∀k:{n..m 1-}. (r0 < x[k])


Proof




Definitions occuring in Statement :  rprod: rprod(n;m;k.x[k]) rless: x < y int-to-real: r(n) real: int_seg: {i..j-} uimplies: supposing a so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a implies:  Q member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: sq_stable: SqStable(P) rprod: rprod(n;m;k.x[k]) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B less_than: a < b squash: T less_than': less_than'(a;b) true: True rless: x < y sq_exists: x:A [B[x]] nat_plus: + nat: ge: i ≥  subtract: m
Lemmas referenced :  sq_stable__rless int-to-real_wf rprod_wf decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf istype-le istype-less_than int_seg_wf lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf rmul-is-positive subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__le rless-int rless_wf nat_plus_properties int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma primrec-wf2 le_wf nat_properties istype-nat real_wf minus-one-mul add-swap add-mul-special zero-mul add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination isectElimination natural_numberEquality hypothesis hypothesisEquality addEquality because_Cache closedConclusion sqequalRule lambdaEquality_alt applyEquality setElimination rename dependent_set_memberEquality_alt productElimination independent_pairFormation unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination universeIsType productIsType inhabitedIsType equalityElimination equalityTransitivity equalitySymmetry equalityIstype promote_hyp instantiate cumulativity inlFormation_alt imageMemberEquality baseClosed imageElimination intEquality functionIsType setIsType functionEquality

Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}.    r0  <  rprod(n;m;k.x[k])  supposing  \mforall{}k:\{n..m  +  1\msupminus{}\}.  (r0  <  x[k])



Date html generated: 2019_10_29-AM-10_17_25
Last ObjectModification: 2019_01_15-AM-09_45_19

Theory : reals


Home Index