Nuprl Lemma : sine-approx-lemma-bad

a:{2...}. ∀N:ℕ.  (∃k:ℕ [(N ≤ (a^((2 k) 3) ((2 k) 3)!))])


Proof




Definitions occuring in Statement :  fact: (n)! exp: i^n int_upper: {i...} nat: le: A ≤ B all: x:A. B[x] sq_exists: x:A [B[x]] multiply: m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q sq_exists: x:A [B[x]] uall: [x:A]. B[x] member: t ∈ T nat: int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: subtype_rel: A ⊆B nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T sq_type: SQType(T) guard: {T} iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) rev_uimplies: rev_uimplies(P;Q) exp: i^n primrec: primrec(n;b;c) primtailrec: primtailrec(n;i;b;f) subtract: m
Lemmas referenced :  istype-le subtract_wf exp_wf2 nat_properties int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf fact_wf istype-less_than primrec-wf2 sq_exists_wf nat_wf le_wf istype-nat istype-int_upper mul_bounds_1a exp_wf4 nat_plus_subtype_nat sq_stable__le subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma set_subtype_base exp_add fact_add2 iff_weakening_equal exp_preserves_le nat_plus_properties upper_subtype_nat istype-false le_functionality le_weakening multiply_functionality_wrt_le exp-nondecreasing mul_preserves_le intformless_wf int_formula_prop_less_lemma mul-associates mul_nat_plus decidable__lt itermSubtract_wf int_term_value_subtract_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin rename setElimination sqequalRule setIsType because_Cache introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality natural_numberEquality hypothesis multiplyEquality dependent_set_memberEquality_alt addEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType applyEquality inhabitedIsType equalityTransitivity equalitySymmetry dependent_set_memberFormation_alt imageMemberEquality baseClosed imageElimination instantiate cumulativity intEquality equalityIstype applyLambdaEquality baseApply closedConclusion sqequalIntensionalEquality productElimination

Latex:
\mforall{}a:\{2...\}.  \mforall{}N:\mBbbN{}.    (\mexists{}k:\mBbbN{}  [(N  \mleq{}  (a\^{}((2  *  k)  +  3)  *  ((2  *  k)  +  3)!))])



Date html generated: 2019_10_29-AM-10_32_57
Last ObjectModification: 2019_02_01-PM-08_46_17

Theory : reals


Home Index