Nuprl Lemma : sine-approx-lemma-bad
∀a:{2...}. ∀N:ℕ.  (∃k:ℕ [(N ≤ (a^((2 * k) + 3) * ((2 * k) + 3)!))])
Proof
Definitions occuring in Statement : 
fact: (n)!, 
exp: i^n, 
int_upper: {i...}, 
nat: ℕ, 
le: A ≤ B, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
multiply: n * m, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
sq_exists: ∃x:A [B[x]], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
int_upper: {i...}, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
nat_plus: ℕ+, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_stable: SqStable(P), 
squash: ↓T, 
sq_type: SQType(T), 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
rev_uimplies: rev_uimplies(P;Q), 
exp: i^n, 
primrec: primrec(n;b;c), 
primtailrec: primtailrec(n;i;b;f), 
subtract: n - m
Lemmas referenced : 
istype-le, 
subtract_wf, 
exp_wf2, 
nat_properties, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
fact_wf, 
istype-less_than, 
primrec-wf2, 
sq_exists_wf, 
nat_wf, 
le_wf, 
istype-nat, 
istype-int_upper, 
mul_bounds_1a, 
exp_wf4, 
nat_plus_subtype_nat, 
sq_stable__le, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
exp_add, 
fact_add2, 
iff_weakening_equal, 
exp_preserves_le, 
nat_plus_properties, 
upper_subtype_nat, 
istype-false, 
le_functionality, 
le_weakening, 
multiply_functionality_wrt_le, 
exp-nondecreasing, 
mul_preserves_le, 
intformless_wf, 
int_formula_prop_less_lemma, 
mul-associates, 
mul_nat_plus, 
decidable__lt, 
itermSubtract_wf, 
int_term_value_subtract_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
rename, 
setElimination, 
sqequalRule, 
setIsType, 
because_Cache, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
multiplyEquality, 
dependent_set_memberEquality_alt, 
addEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberFormation_alt, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
instantiate, 
cumulativity, 
intEquality, 
equalityIstype, 
applyLambdaEquality, 
baseApply, 
closedConclusion, 
sqequalIntensionalEquality, 
productElimination
Latex:
\mforall{}a:\{2...\}.  \mforall{}N:\mBbbN{}.    (\mexists{}k:\mBbbN{}  [(N  \mleq{}  (a\^{}((2  *  k)  +  3)  *  ((2  *  k)  +  3)!))])
Date html generated:
2019_10_29-AM-10_32_57
Last ObjectModification:
2019_02_01-PM-08_46_17
Theory : reals
Home
Index