Nuprl Lemma : rexp-poly-approx
∀[x:{x:ℝ| |x| ≤ (r1/r(4))} ]. ∀[k:ℕ]. ∀[N:ℕ+].
  (|e^x - (r(rexp-approx(x;k;N))/r(2 * N))| ≤ ((r1/r(4^k * 3 * (k)!)) + (r1/r(N))))
Proof
Definitions occuring in Statement : 
rexp-approx: rexp-approx(x;k;N), 
rexp: e^x, 
rdiv: (x/y), 
rleq: x ≤ y, 
rabs: |x|, 
rsub: x - y, 
radd: a + b, 
int-to-real: r(n), 
real: ℝ, 
fact: (n)!, 
exp: i^n, 
nat_plus: ℕ+, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
multiply: n * m, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
prop: ℙ, 
sq_stable: SqStable(P), 
ireal-approx: j-approx(x;M;z), 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
false: False, 
not: ¬A, 
so_apply: x[s], 
nat_plus: ℕ+, 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y
Lemmas referenced : 
small-rexp-remainder, 
rexp-approx-property, 
sq_stable__rleq, 
rabs_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
int-to-real_wf, 
le_witness_for_triv, 
nat_plus_wf, 
istype-nat, 
real_wf, 
rleq_wf, 
rsub_wf, 
rsum_wf, 
int-rdiv_wf, 
fact_wf, 
int_seg_subtype_nat, 
istype-false, 
rnexp_wf, 
int_seg_wf, 
rexp-approx_wf, 
nat_plus_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
int_seg_properties, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
istype-le, 
nat_plus_inc_int_nzero, 
rleq_functionality, 
rabs_functionality, 
rsub_functionality, 
rsum_functionality2, 
int-rdiv-req, 
req_weakening, 
rleq_functionality_wrt_implies, 
rexp_wf, 
radd_wf, 
rleq_weakening_equal, 
r-triangle-inequality2, 
exp_wf2, 
multiply_nat_plus, 
istype-less_than, 
multiply-is-int-iff, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
false_wf, 
radd_functionality_wrt_rleq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
inrFormation_alt, 
dependent_functionElimination, 
productElimination, 
independent_pairFormation, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
imageElimination, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
setIsType, 
closedConclusion, 
applyEquality, 
lambdaFormation_alt, 
addEquality, 
multiplyEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
equalityIstype
Latex:
\mforall{}[x:\{x:\mBbbR{}|  |x|  \mleq{}  (r1/r(4))\}  ].  \mforall{}[k:\mBbbN{}].  \mforall{}[N:\mBbbN{}\msupplus{}].
    (|e\^{}x  -  (r(rexp-approx(x;k;N))/r(2  *  N))|  \mleq{}  ((r1/r(4\^{}k  *  3  *  (k)!))  +  (r1/r(N))))
Date html generated:
2019_10_30-AM-11_40_41
Last ObjectModification:
2019_02_04-AM-10_27_40
Theory : reals_2
Home
Index