Nuprl Lemma : C_Array-elem_vs_DVALp
∀store:C_STOREp(). ∀ctyp:C_TYPE(). ∀env:C_TYPE_env(). ∀dval:C_DVALUEp(). ∀n:ℤ.
  (C_STOREp-welltyped(env;store)
  ⇒ (↑C_Array?(ctyp))
  ⇒ (0 ≤ n)
  ⇒ n < C_Array-length(ctyp)
  ⇒ (↑(C_TYPE_vs_DVALp(env;ctyp) dval))
  ⇒ (↑(C_TYPE_vs_DVALp(env;C_Array-elems(ctyp)) (DVp_Array-arr(dval) (DVp_Array-lower(dval) + n)))))
Proof
Definitions occuring in Statement : 
C_STOREp-welltyped: C_STOREp-welltyped(env;store), 
C_STOREp: C_STOREp(), 
C_TYPE_vs_DVALp: C_TYPE_vs_DVALp(env;ctyp), 
DVp_Array-arr: DVp_Array-arr(v), 
DVp_Array-lower: DVp_Array-lower(v), 
C_DVALUEp: C_DVALUEp(), 
C_TYPE_env: C_TYPE_env(), 
C_Array-elems: C_Array-elems(v), 
C_Array-length: C_Array-length(v), 
C_Array?: C_Array?(v), 
C_TYPE: C_TYPE(), 
assert: ↑b, 
less_than: a < b, 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
add: n + m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
sq_type: SQType(T), 
guard: {T}, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
C_Void: C_Void(), 
C_Array-length: C_Array-length(v), 
pi2: snd(t), 
C_Array?: C_Array?(v), 
pi1: fst(t), 
assert: ↑b, 
bfalse: ff, 
C_Array-elems: C_Array-elems(v), 
false: False, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
bnot: ¬bb, 
C_Int: C_Int(), 
C_Struct: C_Struct(fields), 
C_Array: C_Array(length;elems), 
C_Pointer: C_Pointer(to), 
nat: ℕ, 
C_TYPE_vs_DVALp: C_TYPE_vs_DVALp(env;ctyp), 
C_TYPE_ind: C_TYPE_ind, 
DVp_Null: DVp_Null(x), 
DVp_Array?: DVp_Array?(v), 
DVp_Array-lower: DVp_Array-lower(v), 
DVp_Array-upper: DVp_Array-upper(v), 
DVp_Array-arr: DVp_Array-arr(v), 
DVp_Int: DVp_Int(int), 
DVp_Pointer: DVp_Pointer(ptr), 
DVp_Array: DVp_Array(lower;upper;arr), 
DVp_Struct: DVp_Struct(lbls;struct), 
let: let, 
band: p ∧b q, 
le: A ≤ B, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top, 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
l_all: (∀x∈L.P[x])
Lemmas referenced : 
select-upto, 
length_upto, 
assert-bl-all, 
assert_of_band, 
iff_weakening_uiff, 
iff_transitivity, 
l_all_wf2, 
int_subtype_base, 
equal-wf-T-base, 
lelt_wf, 
int_formula_prop_eq_lemma, 
int_formula_prop_less_lemma, 
intformeq_wf, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermVar_wf, 
itermSubtract_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
add-member-int_seg1, 
l_member_wf, 
upto_wf, 
int_seg_wf, 
bl-all_wf, 
assert_of_eq_int, 
subtract_wf, 
eq_int_wf, 
C_DVALUEp-ext, 
C_STOREp_wf, 
C_TYPE_wf, 
C_TYPE_env_wf, 
C_DVALUEp_wf, 
C_STOREp-welltyped_wf, 
C_Array?_wf, 
le_wf, 
nat_wf, 
C_Array-length_wf, 
less_than_wf, 
C_TYPE_vs_DVALp_wf, 
assert_wf, 
neg_assert_of_eq_atom, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
it_wf, 
unit_subtype_base, 
atom_subtype_base, 
subtype_base_sq, 
assert_of_eq_atom, 
eqtt_to_assert, 
bool_wf, 
eq_atom_wf, 
C_TYPE-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
promote_hyp, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis_subsumption, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
isectElimination, 
tokenEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
instantiate, 
cumulativity, 
atomEquality, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
dependent_pairFormation, 
equalityEquality, 
lambdaEquality, 
setElimination, 
rename, 
natural_numberEquality, 
intEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
setEquality, 
productEquality, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
\mforall{}store:C\_STOREp().  \mforall{}ctyp:C\_TYPE().  \mforall{}env:C\_TYPE\_env().  \mforall{}dval:C\_DVALUEp().  \mforall{}n:\mBbbZ{}.
    (C\_STOREp-welltyped(env;store)
    {}\mRightarrow{}  (\muparrow{}C\_Array?(ctyp))
    {}\mRightarrow{}  (0  \mleq{}  n)
    {}\mRightarrow{}  n  <  C\_Array-length(ctyp)
    {}\mRightarrow{}  (\muparrow{}(C\_TYPE\_vs\_DVALp(env;ctyp)  dval))
    {}\mRightarrow{}  (\muparrow{}(C\_TYPE\_vs\_DVALp(env;C\_Array-elems(ctyp))  
                (DVp\_Array-arr(dval)  (DVp\_Array-lower(dval)  +  n)))))
 Date html generated: 
2016_05_16-AM-08_51_42
 Last ObjectModification: 
2016_01_17-AM-09_43_38
Theory : C-semantics
Home
Index