Nuprl Lemma : copath-at-W

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:W(A;a.B[a])]. ∀[p:copath(a.B[a];w)].  (copath-at(w;p) ∈ W(A;a.B[a]))


Proof




Definitions occuring in Statement :  copath-at: copath-at(w;p) copath: copath(a.B[a];w) W: W(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B copath: copath(a.B[a];w) copath-at: copath-at(w;p) all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) coPath: coPath(a.B[a];w;n) coPath-at: coPath-at(n;w;p) not: ¬A exposed-it: exposed-it bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q bfalse: ff iff: ⇐⇒ Q rev_implies:  Q pi2: snd(t) coW-item: coW-item(w;b) pi1: fst(t) coW-dom: coW-dom(a.B[a];w) ext-eq: A ≡ B decidable: Dec(P) or: P ∨ Q top: Top le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  W-subtype-coW copath_wf W_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf subtract-1-ge-0 istype-top eq_int_wf equal-wf-base bool_wf int_subtype_base assert_wf bnot_wf not_wf false_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot istype-universe W-ext coW-dom_wf coPath_wf subtract_wf decidable__le istype-false not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top istype-void minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf coW-item_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule Error :lambdaEquality_alt,  applyEquality Error :universeIsType,  hypothesis because_Cache productElimination instantiate cumulativity Error :functionIsType,  universeEquality dependent_functionElimination equalityTransitivity equalitySymmetry setElimination rename intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination independent_functionElimination voidElimination axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  baseApply closedConclusion baseClosed intEquality Error :equalityIsType4,  unionElimination equalityElimination independent_pairFormation Error :equalityIsType1,  hypothesis_subsumption promote_hyp functionExtensionality Error :productIsType,  Error :dependent_set_memberEquality_alt,  addEquality Error :isect_memberEquality_alt,  minusEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:W(A;a.B[a])].  \mforall{}[p:copath(a.B[a];w)].    (copath-at(w;p)  \mmember{}  W(A;a.B[a]))



Date html generated: 2019_06_20-PM-00_56_28
Last ObjectModification: 2019_01_02-PM-01_33_16

Theory : co-recursion-2


Home Index