Nuprl Lemma : copath-at-W
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:W(A;a.B[a])]. ∀[p:copath(a.B[a];w)].  (copath-at(w;p) ∈ W(A;a.B[a]))
Proof
Definitions occuring in Statement : 
copath-at: copath-at(w;p)
, 
copath: copath(a.B[a];w)
, 
W: W(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
copath: copath(a.B[a];w)
, 
copath-at: copath-at(w;p)
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
eq_int: (i =z j)
, 
coPath: coPath(a.B[a];w;n)
, 
coPath-at: coPath-at(n;w;p)
, 
not: ¬A
, 
exposed-it: exposed-it
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
pi2: snd(t)
, 
coW-item: coW-item(w;b)
, 
pi1: fst(t)
, 
coW-dom: coW-dom(a.B[a];w)
, 
ext-eq: A ≡ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
W-subtype-coW, 
copath_wf, 
W_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
subtract-1-ge-0, 
istype-top, 
eq_int_wf, 
equal-wf-base, 
bool_wf, 
int_subtype_base, 
assert_wf, 
bnot_wf, 
not_wf, 
false_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
istype-universe, 
W-ext, 
coW-dom_wf, 
coPath_wf, 
subtract_wf, 
decidable__le, 
istype-false, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
istype-void, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
le_wf, 
coW-item_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
applyEquality, 
Error :universeIsType, 
hypothesis, 
because_Cache, 
productElimination, 
instantiate, 
cumulativity, 
Error :functionIsType, 
universeEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
intWeakElimination, 
Error :lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
Error :equalityIsType4, 
unionElimination, 
equalityElimination, 
independent_pairFormation, 
Error :equalityIsType1, 
hypothesis_subsumption, 
promote_hyp, 
functionExtensionality, 
Error :productIsType, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
Error :isect_memberEquality_alt, 
minusEquality
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:W(A;a.B[a])].  \mforall{}[p:copath(a.B[a];w)].    (copath-at(w;p)  \mmember{}  W(A;a.B[a]))
Date html generated:
2019_06_20-PM-00_56_28
Last ObjectModification:
2019_01_02-PM-01_33_16
Theory : co-recursion-2
Home
Index