Nuprl Lemma : subtype_corec

[F:Type ⟶ Type]. F[corec(T.F[T])] ⊆corec(T.F[T]) supposing Monotone(T.F[T])


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) type-monotone: Monotone(T.F[T]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B corec: corec(T.F[T]) nat: top: Top all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} so_apply: x[s] type-monotone: Monotone(T.F[T]) so_lambda: λ2x.t[x] decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) squash: T subtract: m true: True
Lemmas referenced :  primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nat_properties nequal-le-implies zero-add corec_wf primrec_wf subtract_wf decidable__le not-le-2 sq_stable__le condition-implies-le minus-one-mul minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le le-add-cancel top_wf int_seg_wf nat_wf type-monotone_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality isect_memberEquality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis voidElimination voidEquality because_Cache natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination hypothesis_subsumption dependent_set_memberEquality independent_pairFormation applyEquality functionExtensionality universeEquality imageMemberEquality baseClosed imageElimination addEquality intEquality minusEquality isectEquality axiomEquality functionEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  F[corec(T.F[T])]  \msubseteq{}r  corec(T.F[T])  supposing  Monotone(T.F[T])



Date html generated: 2017_04_14-AM-07_46_51
Last ObjectModification: 2017_02_27-PM-03_17_44

Theory : co-recursion


Home Index