Nuprl Lemma : truncate-strat2play

[g:SimpleGame]. ∀[n:ℕ]. ∀[s:win2strat(g;n)]. ∀[moves:strat2play(g;n;s)]. ∀[j:ℕ].
  play-truncate(moves;2 (j 1)) ∈ strat2play(g;j;s) supposing j < n


Proof




Definitions occuring in Statement :  strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) play-truncate: play-truncate(f;m) simple-game: SimpleGame nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T multiply: m add: m natural_number: $n
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] play-len: ||moves|| squash: T true: True less_than': less_than'(a;b) top: Top subtract: m uiff: uiff(P;Q) prop: false: False implies:  Q rev_implies:  Q not: ¬A iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} nat: guard: {T} all: x:A. B[x] subtype_rel: A ⊆B member: t ∈ T uimplies: supposing a uall: [x:A]. B[x]
Lemmas referenced :  mul-commutes mul-distributes add-zero zero-mul mul-distributes-right mul-associates mul_preserves_le le-add-cancel2 zero-add not-le-2 decidable__le multiply-is-int-iff int_subtype_base le_wf set_subtype_base add-is-int-iff strat2play_subtype simple-game_wf win2strat_wf less_than_wf play-len_wf equal_wf strat2play_wf lelt_wf le-add-cancel add-associates add_functionality_wrt_le add-commutes minus-one-mul-top add-swap minus-one-mul nat_wf minus-add condition-implies-le less-iff-le not-lt-2 false_wf decidable__lt strat2play_subtype_le le_weakening2 win2strat_subtype play-truncate_wf
Rules used in proof :  closedConclusion baseApply imageElimination baseClosed imageMemberEquality applyLambdaEquality multiplyEquality setEquality equalitySymmetry equalityTransitivity because_Cache minusEquality intEquality voidEquality isect_memberEquality lambdaEquality independent_functionElimination voidElimination lambdaFormation unionElimination natural_numberEquality addEquality productElimination independent_pairFormation dependent_set_memberEquality sqequalRule rename setElimination dependent_functionElimination hypothesis independent_isectElimination applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:win2strat(g;n)].  \mforall{}[moves:strat2play(g;n;s)].  \mforall{}[j:\mBbbN{}].
    play-truncate(moves;2  *  (j  +  1))  \mmember{}  strat2play(g;j;s)  supposing  j  <  n



Date html generated: 2018_07_25-PM-01_33_01
Last ObjectModification: 2018_06_17-PM-09_41_44

Theory : co-recursion


Home Index