Nuprl Lemma : append-finite-nat-seq-1
∀n,a,b:finite-nat-seq(). ∀x:ℕ.
((↑init-seg-nat-seq(n**λi.x^(1);a**b))
⇒ ((↑init-seg-nat-seq(a;n)) ∨ (↑init-seg-nat-seq(n**λi.x^(1);a))))
Proof
Definitions occuring in Statement :
init-seg-nat-seq: init-seg-nat-seq(f;g)
,
append-finite-nat-seq: f**g
,
mk-finite-nat-seq: f^(n)
,
finite-nat-seq: finite-nat-seq()
,
nat: ℕ
,
assert: ↑b
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
or: P ∨ Q
,
lambda: λx.A[x]
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
finite-nat-seq: finite-nat-seq()
,
decidable: Dec(P)
,
or: P ∨ Q
,
mk-finite-nat-seq: f^(n)
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
append-finite-nat-seq: f**g
,
pi1: fst(t)
,
pi2: snd(t)
,
int_seg: {i..j-}
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
less_than: a < b
,
top: Top
,
true: True
,
squash: ↓T
,
lelt: i ≤ j < k
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
sq_type: SQType(T)
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
assert_wf,
init-seg-nat-seq_wf,
append-finite-nat-seq_wf,
mk-finite-nat-seq_wf,
false_wf,
le_wf,
int_seg_wf,
nat_wf,
finite-nat-seq_wf,
decidable__le,
assert-init-seg-nat-seq2,
lt_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_lt_int,
top_wf,
less_than_wf,
lelt_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
int_seg_properties,
nat_properties,
decidable__equal_int,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformless_wf,
itermVar_wf,
itermAdd_wf,
itermConstant_wf,
intformle_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_wf,
subtype_rel_function,
int_seg_subtype,
add-is-int-iff,
set_subtype_base,
int_subtype_base,
subtype_rel_self,
intformeq_wf,
itermSubtract_wf,
int_formula_prop_eq_lemma,
int_term_value_subtract_lemma,
decidable__lt
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
dependent_set_memberEquality,
natural_numberEquality,
sqequalRule,
independent_pairFormation,
hypothesis,
lambdaEquality,
productElimination,
rename,
dependent_functionElimination,
addEquality,
setElimination,
unionElimination,
inrFormation,
functionExtensionality,
applyEquality,
because_Cache,
independent_functionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
lessCases,
isect_memberFormation,
axiomSqEquality,
isect_memberEquality,
voidElimination,
voidEquality,
imageMemberEquality,
baseClosed,
imageElimination,
dependent_pairFormation,
promote_hyp,
instantiate,
cumulativity,
approximateComputation,
int_eqEquality,
intEquality,
hyp_replacement,
applyLambdaEquality,
functionEquality,
baseApply,
closedConclusion,
inlFormation
Latex:
\mforall{}n,a,b:finite-nat-seq(). \mforall{}x:\mBbbN{}.
((\muparrow{}init-seg-nat-seq(n**\mlambda{}i.x\^{}(1);a**b))
{}\mRightarrow{} ((\muparrow{}init-seg-nat-seq(a;n)) \mvee{} (\muparrow{}init-seg-nat-seq(n**\mlambda{}i.x\^{}(1);a))))
Date html generated:
2019_06_20-PM-03_03_42
Last ObjectModification:
2018_08_20-PM-09_41_20
Theory : continuity
Home
Index