Nuprl Lemma : append-finite-nat-seq-1

n,a,b:finite-nat-seq(). ∀x:ℕ.
  ((↑init-seg-nat-seq(n**λi.x^(1);a**b))  ((↑init-seg-nat-seq(a;n)) ∨ (↑init-seg-nat-seq(n**λi.x^(1);a))))


Proof




Definitions occuring in Statement :  init-seg-nat-seq: init-seg-nat-seq(f;g) append-finite-nat-seq: f**g mk-finite-nat-seq: f^(n) finite-nat-seq: finite-nat-seq() nat: assert: b all: x:A. B[x] implies:  Q or: P ∨ Q lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A finite-nat-seq: finite-nat-seq() decidable: Dec(P) or: P ∨ Q mk-finite-nat-seq: f^(n) guard: {T} iff: ⇐⇒ Q rev_implies:  Q append-finite-nat-seq: f**g pi1: fst(t) pi2: snd(t) int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a less_than: a < b top: Top true: True squash: T lelt: i ≤ j < k bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  assert_wf init-seg-nat-seq_wf append-finite-nat-seq_wf mk-finite-nat-seq_wf false_wf le_wf int_seg_wf nat_wf finite-nat-seq_wf decidable__le assert-init-seg-nat-seq2 lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf lelt_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot int_seg_properties nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf subtype_rel_function int_seg_subtype add-is-int-iff set_subtype_base int_subtype_base subtype_rel_self intformeq_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation hypothesis lambdaEquality productElimination rename dependent_functionElimination addEquality setElimination unionElimination inrFormation functionExtensionality applyEquality because_Cache independent_functionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination lessCases isect_memberFormation axiomSqEquality isect_memberEquality voidElimination voidEquality imageMemberEquality baseClosed imageElimination dependent_pairFormation promote_hyp instantiate cumulativity approximateComputation int_eqEquality intEquality hyp_replacement applyLambdaEquality functionEquality baseApply closedConclusion inlFormation

Latex:
\mforall{}n,a,b:finite-nat-seq().  \mforall{}x:\mBbbN{}.
    ((\muparrow{}init-seg-nat-seq(n**\mlambda{}i.x\^{}(1);a**b))
    {}\mRightarrow{}  ((\muparrow{}init-seg-nat-seq(a;n))  \mvee{}  (\muparrow{}init-seg-nat-seq(n**\mlambda{}i.x\^{}(1);a))))



Date html generated: 2019_06_20-PM-03_03_42
Last ObjectModification: 2018_08_20-PM-09_41_20

Theory : continuity


Home Index