Nuprl Lemma : append-finite-nat-seq-1
∀n,a,b:finite-nat-seq(). ∀x:ℕ.
  ((↑init-seg-nat-seq(n**λi.x^(1);a**b)) ⇒ ((↑init-seg-nat-seq(a;n)) ∨ (↑init-seg-nat-seq(n**λi.x^(1);a))))
Proof
Definitions occuring in Statement : 
init-seg-nat-seq: init-seg-nat-seq(f;g), 
append-finite-nat-seq: f**g, 
mk-finite-nat-seq: f^(n), 
finite-nat-seq: finite-nat-seq(), 
nat: ℕ, 
assert: ↑b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
lambda: λx.A[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
finite-nat-seq: finite-nat-seq(), 
decidable: Dec(P), 
or: P ∨ Q, 
mk-finite-nat-seq: f^(n), 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
append-finite-nat-seq: f**g, 
pi1: fst(t), 
pi2: snd(t), 
int_seg: {i..j-}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
less_than: a < b, 
top: Top, 
true: True, 
squash: ↓T, 
lelt: i ≤ j < k, 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
assert_wf, 
init-seg-nat-seq_wf, 
append-finite-nat-seq_wf, 
mk-finite-nat-seq_wf, 
false_wf, 
le_wf, 
int_seg_wf, 
nat_wf, 
finite-nat-seq_wf, 
decidable__le, 
assert-init-seg-nat-seq2, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
lelt_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
int_seg_properties, 
nat_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
subtype_rel_function, 
int_seg_subtype, 
add-is-int-iff, 
set_subtype_base, 
int_subtype_base, 
subtype_rel_self, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
hypothesis, 
lambdaEquality, 
productElimination, 
rename, 
dependent_functionElimination, 
addEquality, 
setElimination, 
unionElimination, 
inrFormation, 
functionExtensionality, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lessCases, 
isect_memberFormation, 
axiomSqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
approximateComputation, 
int_eqEquality, 
intEquality, 
hyp_replacement, 
applyLambdaEquality, 
functionEquality, 
baseApply, 
closedConclusion, 
inlFormation
Latex:
\mforall{}n,a,b:finite-nat-seq().  \mforall{}x:\mBbbN{}.
    ((\muparrow{}init-seg-nat-seq(n**\mlambda{}i.x\^{}(1);a**b))
    {}\mRightarrow{}  ((\muparrow{}init-seg-nat-seq(a;n))  \mvee{}  (\muparrow{}init-seg-nat-seq(n**\mlambda{}i.x\^{}(1);a))))
Date html generated:
2019_06_20-PM-03_03_42
Last ObjectModification:
2018_08_20-PM-09_41_20
Theory : continuity
Home
Index