Nuprl Lemma : decidable-bar-rec-equal-spector
∀[dec,base,ind:Top]. ∀[n:ℕ]. ∀[s:Top].
(decidable-bar-rec(dec;base;ind;n;s) ~ spector-bar-rec(λn,s. if dec n s then 0 else n + 1 fi ;λn,s. case dec n s
of inl(r) =>
base n s r
| inr(x) =>
⊥;ind;n;s))
Proof
Definitions occuring in Statement :
decidable-bar-rec: decidable-bar-rec(dec;base;ind;n;s)
,
spector-bar-rec: spector-bar-rec(Y;G;H;n;s)
,
nat: ℕ
,
bottom: ⊥
,
ifthenelse: if b then t else f fi
,
uall: ∀[x:A]. B[x]
,
top: Top
,
apply: f a
,
lambda: λx.A[x]
,
decide: case b of inl(x) => s[x] | inr(y) => t[y]
,
add: n + m
,
natural_number: $n
,
sqequal: s ~ t
Definitions unfolded in proof :
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
spector-bar-rec: spector-bar-rec(Y;G;H;n;s)
,
decidable-bar-rec: decidable-bar-rec(dec;base;ind;n;s)
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
decidable: Dec(P)
,
or: P ∨ Q
,
nat_plus: ℕ+
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
has-value: (a)↓
,
ifthenelse: if b then t else f fi
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
le_int: i ≤z j
,
lt_int: i <z j
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
squash: ↓T
,
true: True
,
less_than': less_than'(a;b)
,
less_than: a < b
Lemmas referenced :
istype-top,
nat_wf,
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
base_wf,
fun_exp0_lemma,
strictness-apply,
bottom-sqle,
decidable__le,
subtract_wf,
intformnot_wf,
itermSubtract_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
fun_exp_unroll_1,
has-value_wf_base,
int_subtype_base,
set_subtype_base,
le_wf,
is-exception_wf,
top_wf,
equal_wf,
le_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_le_int,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
itermAdd_wf,
int_term_value_add_lemma,
subtract-1-ge-0,
istype-base,
istype-less_than,
istype-void,
istype-int,
full-omega-unsat,
int-value-type,
union-value-type,
value-type-has-value,
assert_wf,
iff_weakening_uiff,
assert_of_lt_int,
lt_int_wf,
not-exception-has-value,
set-value-type
Rules used in proof :
extract_by_obid,
Error :universeIsType,
Error :isectIsTypeImplies,
isectElimination,
Error :isect_memberEquality_alt,
hypothesisEquality,
Error :inhabitedIsType,
axiomSqEquality,
hypothesis,
sqequalHypSubstitution,
sqequalSqle,
thin,
sqequalRule,
cut,
introduction,
Error :isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
fixpointLeast,
setElimination,
rename,
intWeakElimination,
lambdaFormation,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
independent_functionElimination,
axiomSqleEquality,
unionElimination,
dependent_set_memberEquality,
because_Cache,
divergentSqle,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
callbyvalueDecide,
equalityTransitivity,
equalitySymmetry,
unionEquality,
equalityElimination,
productElimination,
sqleReflexivity,
promote_hyp,
instantiate,
cumulativity,
addEquality,
sqleRule,
decideExceptionCases,
Error :lambdaEquality_alt,
exceptionLess,
exceptionSqequal,
Error :dependent_set_memberEquality_alt,
Error :functionIsTypeImplies,
Error :dependent_pairFormation_alt,
approximateComputation,
Error :lambdaFormation_alt,
callbyvalueLess,
Error :equalityIsType1,
Error :equalityIsType2,
imageElimination,
imageMemberEquality,
lessCases,
lessExceptionCases
Latex:
\mforall{}[dec,base,ind:Top]. \mforall{}[n:\mBbbN{}]. \mforall{}[s:Top].
(decidable-bar-rec(dec;base;ind;n;s)
\msim{} spector-bar-rec(\mlambda{}n,s. if dec n s then 0 else n + 1 fi ;\mlambda{}n,s. case dec n s
of inl(r) =>
base n s r
| inr(x) =>
\mbot{};ind;n;s))
Date html generated:
2019_06_20-PM-03_06_04
Last ObjectModification:
2019_03_27-PM-03_15_35
Theory : continuity
Home
Index