Nuprl Lemma : decidable-bar-rec-equal-spector
∀[dec,base,ind:Top]. ∀[n:ℕ]. ∀[s:Top].
  (decidable-bar-rec(dec;base;ind;n;s) ~ spector-bar-rec(λn,s. if dec n s then 0 else n + 1 fi λn,s. case dec n s
                                                                                                  of inl(r) =>
                                                                                                  base n s r
                                                                                                  | inr(x) =>
                                                                                                  ⊥;ind;n;s))
Proof
Definitions occuring in Statement : 
decidable-bar-rec: decidable-bar-rec(dec;base;ind;n;s)
, 
spector-bar-rec: spector-bar-rec(Y;G;H;n;s)
, 
nat: ℕ
, 
bottom: ⊥
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
lambda: λx.A[x]
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
spector-bar-rec: spector-bar-rec(Y;G;H;n;s)
, 
decidable-bar-rec: decidable-bar-rec(dec;base;ind;n;s)
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
has-value: (a)↓
, 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
, 
less_than': less_than'(a;b)
, 
less_than: a < b
Lemmas referenced : 
istype-top, 
nat_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
base_wf, 
fun_exp0_lemma, 
strictness-apply, 
bottom-sqle, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
fun_exp_unroll_1, 
has-value_wf_base, 
int_subtype_base, 
set_subtype_base, 
le_wf, 
is-exception_wf, 
top_wf, 
equal_wf, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
itermAdd_wf, 
int_term_value_add_lemma, 
subtract-1-ge-0, 
istype-base, 
istype-less_than, 
istype-void, 
istype-int, 
full-omega-unsat, 
int-value-type, 
union-value-type, 
value-type-has-value, 
assert_wf, 
iff_weakening_uiff, 
assert_of_lt_int, 
lt_int_wf, 
not-exception-has-value, 
set-value-type
Rules used in proof : 
extract_by_obid, 
Error :universeIsType, 
Error :isectIsTypeImplies, 
isectElimination, 
Error :isect_memberEquality_alt, 
hypothesisEquality, 
Error :inhabitedIsType, 
axiomSqEquality, 
hypothesis, 
sqequalHypSubstitution, 
sqequalSqle, 
thin, 
sqequalRule, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
fixpointLeast, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomSqleEquality, 
unionElimination, 
dependent_set_memberEquality, 
because_Cache, 
divergentSqle, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
callbyvalueDecide, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
equalityElimination, 
productElimination, 
sqleReflexivity, 
promote_hyp, 
instantiate, 
cumulativity, 
addEquality, 
sqleRule, 
decideExceptionCases, 
Error :lambdaEquality_alt, 
exceptionLess, 
exceptionSqequal, 
Error :dependent_set_memberEquality_alt, 
Error :functionIsTypeImplies, 
Error :dependent_pairFormation_alt, 
approximateComputation, 
Error :lambdaFormation_alt, 
callbyvalueLess, 
Error :equalityIsType1, 
Error :equalityIsType2, 
imageElimination, 
imageMemberEquality, 
lessCases, 
lessExceptionCases
Latex:
\mforall{}[dec,base,ind:Top].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:Top].
    (decidable-bar-rec(dec;base;ind;n;s) 
    \msim{}  spector-bar-rec(\mlambda{}n,s.  if  dec  n  s  then  0  else  n  +  1  fi  ;\mlambda{}n,s.  case  dec  n  s
                                                                                                                          of  inl(r)  =>
                                                                                                                          base  n  s  r
                                                                                                                          |  inr(x)  =>
                                                                                                                          \mbot{};ind;n;s))
Date html generated:
2019_06_20-PM-03_06_04
Last ObjectModification:
2019_03_27-PM-03_15_35
Theory : continuity
Home
Index