Nuprl Lemma : enum-fin-seq-max2_wf

[M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)]. ∀[m:ℕ].  (enum-fin-seq-max2(M;m) ∈ ℕ)


Proof




Definitions occuring in Statement :  enum-fin-seq-max2: enum-fin-seq-max2(M;m) int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T enum-fin-seq-max2: enum-fin-seq-max2(M;m) nat: all: x:A. B[x] implies:  Q prop: subtype_rel: A ⊆B uimplies: supposing a top: Top squash: T guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q nat_plus: + less_than: a < b less_than': less_than'(a;b) true: True le: A ≤ B false: False not: ¬A list_n: List(n) so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] cand: c∧ B ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  imax-list_wf map_wf nat_wf bool_wf equal_wf enum-fin-seq_wf map-length less_than_wf list_n_properties iff_weakening_equal exp-positive-stronger le_wf int_seg_wf unit_wf2 imax-list-ub subtype_rel_function int_seg_subtype_nat false_wf subtype_rel_self list_n_wf exp_wf2 length-map l_exists_map l_exists_iff l_member_wf btrue_wf zero-le-nat nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf enum-fin-seq-true squash_wf true_wf list_wf select_member lelt_wf length_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis intEquality lambdaEquality because_Cache lambdaFormation equalityTransitivity equalitySymmetry hypothesisEquality dependent_functionElimination independent_functionElimination applyEquality sqequalRule independent_isectElimination isect_memberEquality voidElimination voidEquality imageElimination imageMemberEquality baseClosed productElimination natural_numberEquality independent_pairFormation axiomEquality setElimination rename unionEquality unionElimination addEquality setEquality dependent_pairFormation approximateComputation int_eqEquality productEquality universeEquality instantiate

Latex:
\mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mBbbN{}?)].  \mforall{}[m:\mBbbN{}].    (enum-fin-seq-max2(M;m)  \mmember{}  \mBbbN{})



Date html generated: 2019_06_20-PM-02_57_01
Last ObjectModification: 2018_08_21-PM-01_57_12

Theory : continuity


Home Index