Nuprl Lemma : enum-fin-seq-max2_wf
∀[M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)]. ∀[m:ℕ].  (enum-fin-seq-max2(M;m) ∈ ℕ)
Proof
Definitions occuring in Statement : 
enum-fin-seq-max2: enum-fin-seq-max2(M;m)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
enum-fin-seq-max2: enum-fin-seq-max2(M;m)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
, 
list_n: A List(n)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
Lemmas referenced : 
imax-list_wf, 
map_wf, 
nat_wf, 
bool_wf, 
equal_wf, 
enum-fin-seq_wf, 
map-length, 
less_than_wf, 
list_n_properties, 
iff_weakening_equal, 
exp-positive-stronger, 
le_wf, 
int_seg_wf, 
unit_wf2, 
imax-list-ub, 
subtype_rel_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
list_n_wf, 
exp_wf2, 
length-map, 
l_exists_map, 
l_exists_iff, 
l_member_wf, 
btrue_wf, 
zero-le-nat, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
enum-fin-seq-true, 
squash_wf, 
true_wf, 
list_wf, 
select_member, 
lelt_wf, 
length_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
intEquality, 
lambdaEquality, 
because_Cache, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
sqequalRule, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
natural_numberEquality, 
independent_pairFormation, 
axiomEquality, 
setElimination, 
rename, 
unionEquality, 
unionElimination, 
addEquality, 
setEquality, 
dependent_pairFormation, 
approximateComputation, 
int_eqEquality, 
productEquality, 
universeEquality, 
instantiate
Latex:
\mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mBbbN{}?)].  \mforall{}[m:\mBbbN{}].    (enum-fin-seq-max2(M;m)  \mmember{}  \mBbbN{})
Date html generated:
2019_06_20-PM-02_57_01
Last ObjectModification:
2018_08_21-PM-01_57_12
Theory : continuity
Home
Index