Nuprl Lemma : absval_sum
∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ].  (|Σ(f[x] | x < n)| ≤ Σ(|f[x]| | x < n))
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k), 
absval: |i|, 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
le: A ≤ B, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
or: P ∨ Q, 
decidable: Dec(P), 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
guard: {T}, 
less_than': less_than'(a;b), 
absval: |i|, 
le: A ≤ B, 
prop: ℙ, 
and: P ∧ Q, 
top: Top, 
not: ¬A, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
uimplies: b supposing a, 
ge: i ≥ j , 
false: False, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
le_weakening, 
int-triangle-inequality, 
le_functionality, 
int_term_value_add_lemma, 
itermAdd_wf, 
lelt_wf, 
decidable__lt, 
sum_wf, 
equal_wf, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
not_wf, 
bnot_wf, 
iff_transitivity, 
assert_of_eq_int, 
eqtt_to_assert, 
assert_wf, 
int_subtype_base, 
equal-wf-base, 
uiff_transitivity, 
bool_wf, 
eq_int_wf, 
primrec-unroll, 
subtype_rel_self, 
int_seg_subtype, 
subtype_rel_dep_function, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
int_seg_properties, 
le_wf, 
false_wf, 
primrec0_lemma, 
nat_wf, 
primrec_wf, 
less_than'_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
absval_wf, 
int_seg_wf, 
sum-as-primrec
Rules used in proof : 
impliesFunctionality, 
baseClosed, 
closedConclusion, 
baseApply, 
equalityElimination, 
unionElimination, 
applyLambdaEquality, 
dependent_set_memberEquality, 
minusEquality, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
addEquality, 
independent_pairEquality, 
productElimination, 
independent_functionElimination, 
computeAll, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_isectElimination, 
intWeakElimination, 
lambdaFormation, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (|\mSigma{}(f[x]  |  x  <  n)|  \mleq{}  \mSigma{}(|f[x]|  |  x  <  n))
Date html generated:
2017_04_14-AM-09_21_48
Last ObjectModification:
2017_04_13-AM-00_46_41
Theory : int_2
Home
Index