Nuprl Lemma : filter_iseg

[T:Type]. ∀P:T ⟶ 𝔹. ∀L2,L1:T List.  (L1 ≤ L2  filter(P;L1) ≤ filter(P;L2))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 filter: filter(P;l) list: List bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a top: Top iff: ⇐⇒ Q and: P ∧ Q not: ¬A false: False rev_implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b cand: c∧ B
Lemmas referenced :  list_induction all_wf list_wf iseg_wf filter_wf5 subtype_rel_dep_function bool_wf l_member_wf subtype_rel_self set_wf filter_nil_lemma filter_cons_lemma nil_wf iseg_nil assert_elim null_wf member-implies-null-eq-bfalse btrue_neq_bfalse assert_of_null equal-wf-T-base cons_wf ifthenelse_wf eqtt_to_assert nil_iseg eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot assert_wf bnot_wf not_wf cons_iseg uiff_transitivity assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis functionEquality applyEquality because_Cache setEquality independent_isectElimination setElimination rename independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality universeEquality productElimination equalityTransitivity equalitySymmetry hyp_replacement applyLambdaEquality baseClosed unionElimination equalityElimination dependent_pairFormation promote_hyp instantiate cumulativity independent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L2,L1:T  List.    (L1  \mleq{}  L2  {}\mRightarrow{}  filter(P;L1)  \mleq{}  filter(P;L2))



Date html generated: 2019_06_20-PM-01_29_04
Last ObjectModification: 2018_09_17-PM-06_49_12

Theory : list_1


Home Index