Nuprl Lemma : filter_iseg
∀[T:Type]. ∀P:T ⟶ 𝔹. ∀L2,L1:T List.  (L1 ≤ L2 ⇒ filter(P;L1) ≤ filter(P;L2))
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2, 
filter: filter(P;l), 
list: T List, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
uimplies: b supposing a, 
top: Top, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
not: ¬A, 
false: False, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
cand: A c∧ B
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
iseg_wf, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
subtype_rel_self, 
set_wf, 
filter_nil_lemma, 
filter_cons_lemma, 
nil_wf, 
iseg_nil, 
assert_elim, 
null_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
assert_of_null, 
equal-wf-T-base, 
cons_wf, 
ifthenelse_wf, 
eqtt_to_assert, 
nil_iseg, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
assert_wf, 
bnot_wf, 
not_wf, 
cons_iseg, 
uiff_transitivity, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
functionEquality, 
applyEquality, 
because_Cache, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
universeEquality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
baseClosed, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L2,L1:T  List.    (L1  \mleq{}  L2  {}\mRightarrow{}  filter(P;L1)  \mleq{}  filter(P;L2))
Date html generated:
2019_06_20-PM-01_29_04
Last ObjectModification:
2018_09_17-PM-06_49_12
Theory : list_1
Home
Index