Nuprl Lemma : iterated-rotate

[n,i:ℕ].  rot(n)^i x.if i <then else (x i) fi ) ∈ (ℕn ⟶ ℕn) supposing i ≤ n


Proof




Definitions occuring in Statement :  rotate: rot(n) fun_exp: f^n int_seg: {i..j-} nat: ifthenelse: if then else fi  lt_int: i <j uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q fun_exp: f^n subtype_rel: A ⊆B compose: g rotate: rot(n) nequal: a ≠ b ∈  le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf fun_exp0_lemma lt_int_wf eqtt_to_assert assert_of_lt_int int_seg_properties decidable__equal_int intformnot_wf intformeq_wf itermAdd_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le decidable__lt lelt_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf subtract_wf int_seg_wf subtract-1-ge-0 nat_wf itermSubtract_wf int_term_value_subtract_lemma primrec-unroll equal-wf-base int_subtype_base ifthenelse_wf le_int_wf bnot_wf eq_int_wf assert_of_eq_int neg_assert_of_eq_int equal-wf-T-base equal_wf add-member-int_seg2 uiff_transitivity assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :functionExtensionality_alt,  addEquality unionElimination equalityElimination because_Cache productElimination Error :dependent_set_memberEquality_alt,  Error :equalityIsType1,  promote_hyp instantiate cumulativity baseApply closedConclusion baseClosed applyEquality intEquality hyp_replacement applyLambdaEquality functionExtensionality

Latex:
\mforall{}[n,i:\mBbbN{}].    rot(n)\^{}i  =  (\mlambda{}x.if  x  +  i  <z  n  then  x  +  i  else  (x  +  i)  -  n  fi  )  supposing  i  \mleq{}  n



Date html generated: 2019_06_20-PM-01_35_33
Last ObjectModification: 2018_10_03-PM-11_00_52

Theory : list_1


Home Index