Nuprl Lemma : iterated-rotate
∀[n,i:ℕ].  rot(n)^i = (λx.if x + i <z n then x + i else (x + i) - n fi ) ∈ (ℕn ⟶ ℕn) supposing i ≤ n
Proof
Definitions occuring in Statement : 
rotate: rot(n), 
fun_exp: f^n, 
int_seg: {i..j-}, 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
int_seg: {i..j-}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
guard: {T}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
fun_exp: f^n, 
subtype_rel: A ⊆r B, 
compose: f o g, 
rotate: rot(n), 
nequal: a ≠ b ∈ T , 
le: A ≤ B, 
less_than': less_than'(a;b)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
le_wf, 
fun_exp0_lemma, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
int_seg_properties, 
decidable__equal_int, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
decidable__le, 
decidable__lt, 
lelt_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
subtract_wf, 
int_seg_wf, 
subtract-1-ge-0, 
nat_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
primrec-unroll, 
equal-wf-base, 
int_subtype_base, 
ifthenelse_wf, 
le_int_wf, 
bnot_wf, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
equal-wf-T-base, 
equal_wf, 
add-member-int_seg2, 
uiff_transitivity, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
Error :lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionExtensionality_alt, 
addEquality, 
unionElimination, 
equalityElimination, 
because_Cache, 
productElimination, 
Error :dependent_set_memberEquality_alt, 
Error :equalityIsType1, 
promote_hyp, 
instantiate, 
cumulativity, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
hyp_replacement, 
applyLambdaEquality, 
functionExtensionality
Latex:
\mforall{}[n,i:\mBbbN{}].    rot(n)\^{}i  =  (\mlambda{}x.if  x  +  i  <z  n  then  x  +  i  else  (x  +  i)  -  n  fi  )  supposing  i  \mleq{}  n
Date html generated:
2019_06_20-PM-01_35_33
Last ObjectModification:
2018_10_03-PM-11_00_52
Theory : list_1
Home
Index