Nuprl Lemma : unshuffle-map
∀[f:ℕ ⟶ Top]. ∀[m:ℕ].  (unshuffle(map(f;upto(2 * m))) ~ map(λi.<f (2 * i), f ((2 * i) + 1)>upto(m)))
Proof
Definitions occuring in Statement : 
unshuffle: unshuffle(L)
, 
upto: upto(n)
, 
map: map(f;as)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
upto: upto(n)
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
from-upto: [n, m)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
lelt: i ≤ j < k
, 
shuffle: shuffle(ps)
, 
concat: concat(ll)
, 
decidable: Dec(P)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
true: True
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
has-value: (a)↓
, 
subtract: n - m
, 
cand: A c∧ B
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
le_wf, 
subtract_wf, 
int_seg_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
map_cons_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
int_seg_properties, 
itermMultiply_wf, 
itermSubtract_wf, 
int_term_value_mul_lemma, 
int_term_value_subtract_lemma, 
map_nil_lemma, 
reduce_nil_lemma, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
false_wf, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
lelt_wf, 
list_wf, 
list_subtype_base, 
set_subtype_base, 
int_subtype_base, 
from-upto_wf, 
squash_wf, 
true_wf, 
mul-commutes, 
unshuffle-shuffle, 
top_wf, 
map_wf, 
upto_wf, 
nat_wf, 
reduce_cons_lemma, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
value-type-has-value, 
int-value-type, 
add-member-int_seg2, 
add-subtract-cancel, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
subtype_rel_list_set
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
sqequalAxiom, 
addEquality, 
because_Cache, 
multiplyEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
dependent_set_memberEquality, 
setEquality, 
productEquality, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_pairEquality, 
functionEquality, 
callbyvalueReduce
Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  Top].  \mforall{}[m:\mBbbN{}].
    (unshuffle(map(f;upto(2  *  m)))  \msim{}  map(\mlambda{}i.<f  (2  *  i),  f  ((2  *  i)  +  1)>upto(m)))
Date html generated:
2018_05_21-PM-00_44_48
Last ObjectModification:
2018_05_19-AM-06_49_28
Theory : list_1
Home
Index