Nuprl Lemma : AF-induction-iff

T:Type. ∀R:T ⟶ T ⟶ ℙ.
  ((∀x,y:T.  Dec(R+[x;y]))
   (∃R':T ⟶ T ⟶ ℙ(AFx,y:T.R'[x;y] ∧ (∀x,y:T.  (R+[x;y]  R'[x;y])))) ⇐⇒ ∀Q:T ⟶ ℙTI(T;x,y.R[x;y];t.Q[t])))


Proof




Definitions occuring in Statement :  rel_plus: R+ almost-full: AFx,y:T.R[x; y] TI: TI(T;x,y.R[x; y];t.Q[t]) decidable: Dec(P) prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] prop: exists: x:A. B[x] uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] not: ¬A subtype_rel: A ⊆B false: False rev_implies:  Q cand: c∧ B almost-full: AFx,y:T.R[x; y] nat: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top ge: i ≥  TI: TI(T;x,y.R[x; y];t.Q[t]) le: A ≤ B less_than': less_than'(a;b) squash: T infix_ap: y bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff eq_int: (i =z j) sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) true: True
Lemmas referenced :  AF-induction4 almost-full_wf rel_plus_wf subtype_rel_self istype-void not_wf TI_wf decidable_wf istype-universe istype-nat all_wf nat_wf equal_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le squash_wf exists_wf nat_properties intformand_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_term_value_add_lemma int_term_value_var_lemma istype-false decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than rel_plus_iff2 eq_int_wf intformeq_wf int_formula_prop_eq_lemma assert_wf bnot_wf equal-wf-base set_subtype_base le_wf int_subtype_base istype-assert bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot rel-star-iff-rel-plus true_wf iff_weakening_equal zero-add
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_pairFormation independent_isectElimination sqequalRule Error :lambdaEquality_alt,  applyEquality Error :universeIsType,  Error :functionIsType,  universeEquality Error :productIsType,  Error :inhabitedIsType,  isectElimination because_Cache instantiate Error :dependent_pairFormation_alt,  independent_functionElimination voidElimination functionExtensionality functionEquality cumulativity Error :dependent_set_memberEquality_alt,  natural_numberEquality unionElimination approximateComputation Error :isect_memberEquality_alt,  addEquality setElimination rename int_eqEquality imageElimination productElimination imageMemberEquality baseClosed Error :equalityIstype,  Error :setIsType,  applyLambdaEquality equalityTransitivity equalitySymmetry closedConclusion equalityElimination hyp_replacement intEquality baseApply sqequalBase

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}x,y:T.    Dec(R\msupplus{}[x;y]))
    {}\mRightarrow{}  (\mexists{}R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  (AFx,y:T.R'[x;y]  \mwedge{}  (\mforall{}x,y:T.    (R\msupplus{}[x;y]  {}\mRightarrow{}  (\mneg{}R'[x;y]))))
          \mLeftarrow{}{}\mRightarrow{}  \mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.  TI(T;x,y.R[x;y];t.Q[t])))



Date html generated: 2019_06_20-PM-02_02_20
Last ObjectModification: 2018_12_07-PM-06_37_22

Theory : relations2


Home Index